Являются ли взаимно простыми числа

Являются ли взаимно простыми числа

Информация этой статьи покрывает тему «взаимно простые числа». Сначала дано определение двух взаимно простых чисел, а также определение трех и большего количества взаимно простых чисел. После этого приведены примеры взаимно простых чисел, и показано, как доказать, что данные числа являются взаимно простыми. Дальше перечислены и доказаны основные свойства взаимно простых чисел. В заключение упомянуты попарно простые числа, так как они тесно связаны со взаимно простыми числами.

Навигация по странице.

Взаимно простые числа – определение и примеры

Понятие взаимно простых чисел дается как для двух целых чисел, так и для их большего числа. Сначала приведем определение двух взаимно простых чисел. Это определение дается через наибольший общий делитель чисел, так что рекомендуем сначала разобраться с материалом указанной статьи.

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, то есть, НОД(a, b)=1 .

Из определения взаимно простых чисел следует, что два взаимно простых числа имеют лишь один положительный общий делитель, который равен единице. А всего общих делителей у двух взаимно простых чисел две штуки – это числа 1 и −1 .

Приведем примеры взаимно простых чисел.

Числа 5 и 11 являются взаимно простыми. Действительно, и 5 и 11 – простые числа, следовательно, их положительным общим делителем является только число 1 , что подтверждает взаимную простоту чисел 5 и 11 .

Заметим, что два простых числа всегда являются взаимно простыми. Однако, два числа не обязательно должны быть простыми, чтобы быть взаимно простыми. Либо одно из них, либо они оба могут быть составными и при этом являться взаимно простыми. Приведем пример, иллюстрирующий это высказывание.

Два составных числа 8 и −9 являются взаимно простыми. Обоснуем это. Для этого найдем наибольший общий делитель этих чисел, записав все делители чисел 8 и −9 (при необходимости смотрите статью число делителей числа, все делители числа). Делителями восьмерки является любое из чисел ±1 , ±2 , ±4 , ±8 ; все делители −9 есть числа ±1 , ±3 , ±9 . Следовательно, НОД(8, −9)=1 , поэтому, по определению 8 и −9 – два взаимно простых числа.

А вот числа 45 и 500 не являются взаимно простыми, так как имеют положительный общий делитель, отличный от единицы, которым является число 5 (делимость чисел 45 и 500 на 5 очевидна, если знать признак делимости на 5). Другой парой не взаимно простых чисел является пара 3 и −201 , так как 3 есть их общий положительный делитель (делимость числа −201 на 3 легко устанавливается при помощи признака делимости на 3).

Часто встречаются задания, в которых требуется доказать, что данные целые числа являются взаимно простыми. Доказательство сводится к вычислению наибольшего общего делителя данных чисел и проверке НОД на его равенство единице. Полезно также перед вычислением НОД заглянуть в таблицу простых чисел: вдруг исходные целые числа являются простыми, а мы знаем, что наибольший общий делитель простых чисел равен единице. Рассмотрим решение примера.

Докажите, что числа 84 и 275 являются взаимно простыми.

Очевидно, что данные числа не являются простыми, поэтому мы не можем сразу говорить о взаимной простоте чисел 84 и 275 , и нам придется вычислять НОД. Используем алгоритм Евклида для нахождения НОД: 275=84·3+23 , 84=23·3+15 , 23=15·1+8 , 15=8·1+7 , 8=7·1+1 , 7=7·1 , следовательно, НОД(84, 275)=1 . Этим доказано, что числа 84 и 275 взаимно простые.

Определение взаимно простых чисел можно расширить для трех и большего количества чисел.

Целые числа a1, a2, …, ak , k>2 называются взаимно простыми, если наибольший общий делитель этих чисел равен единице.

Из озвученного определения следует, что если некоторый набор целых чисел имеет положительный общий делитель, отличный от единицы, то данные целые числа не являются взаимно простыми.

Приведем примеры. Три целых числа −99 , 17 и −27 являются взаимно простыми. Любая совокупность простых чисел составляет набор взаимно простых чисел, к примеру, 2 , 3 , 11 , 19 , 151 , 293 и 677 – взаимно простые числа. А четыре числа 12 , −9 , 900 и −72 не являются взаимно простыми, так как они имеют положительный общий делитель 3 , отличный от 1 . Числа 17 , 85 и 187 тоже не взаимно простые, так как каждое из них делится на 17 .

Обычно далеко не очевидно, что некоторые числа являются взаимно простыми, и этот факт приходится доказывать. Для выяснения, являются ли данные числа взаимно простыми, приходится находить наибольший общий делитель этих чисел, и на основании определения взаимно простых чисел делать вывод.

Являются ли числа 331 , 463 и 733 взаимно простыми?

Заглянув в таблицу простых чисел, мы обнаружим, что каждое из чисел 331 , 463 и 733 – простое. Следовательно, они имеют единственный положительный общий делитель – единицу. Таким образом, три числа 331 , 463 и 733 есть взаимно простые числа.

Целые числа будут взаимно простыми, когда у них не будет ни одного общего делителя (множителя), не считая ±1.

14, 25 взаимно простые — не существует общих делителей.

15, 25 не взаимно простые (общий делитель 5).

6, 8, 9 взаимно простые — не существует делителей, общих для 3-х чисел.

Пример: расстановим на плоскости точки с целыми координатами нулевой толщины, так чтобы из начала координат были видны лишь точки, у которых координаты взаимно просты.

Числа 4 и 9 взаимно простые, значит, диагональ решетки 4 на 9 не пересекает других точек решетки.

Целые числа a1, a2, …, ak, k>2 будут взаимно простыми, когда НОД этих чисел будет 1.

Свойства взаимно простых чисел.

Числа a и b взаимно просты лишь в том случае, если выполняется одно из эквивалентных условий:

Всякие 2 (разных) простых числа всегда будут взаимно простыми.

Когда a — делитель произведения bc, и a взаимно просто с b, значит a — делитель c.

Возможность того, что любое k, которое выбрано случайным образом, положительных целых чисел окажутся взаимно простыми, соответствует 1/ζ(k), при этом, при N→∞ возможность того, что k положительных целых чисел, которые меньше N (и которые выбраны случайно) окажутся взаимно простыми, стремится к 1/ζ(k).

Когда в наборе чисел всякие 2 взаимно просты, значит эти числа являются попарно взаимно простыми. Для 2-х чисел выражения «взаимно простые» и «попарно взаимно простые» — это одно и то же.

2 натуральных числа, которые расположены рядом, всегда взаимно просты.

Примеры взаимно простых чисел:

8, 15 — взаимно простые, но не простые.

6, 8, 9 — не попарно взаимно простые, но взаимно простые числа.

8, 15, 49 — попарно взаимно простые.

Применение взаимно простых чисел.

Зачастую количество зубьев на звёздочках и количество звеньев цепи в цепной передаче стараются сделать взаимно простыми. Это дает более равномерный износ: все зубья звёздочки будут по очереди работать с каждым из звеньев цепи.

Ответ

Проверено экспертом

Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1

22 = 2 * 11

25 = 5 * 5

Нет общих делителей кроме ±1

Ссылка на основную публикацию
Шампанское шато тамань брют отзывы
Производитель: ООО «Кубань-Вино» Сбор винограда: 2016 Происхождение: Краснодарский край, Россия Сорт винограда: Шардоне, Рислинг и иные белые На отзыве у...
Что означает ошибка 110
Ошибка 110 в Android происходит главным образом при обновлении или установке приложений из Google Play. Случается это из-за несовместимости ОС:...
Что означает ошибка 963
Ошибки в Google Play дело достаточно частое, это не удивительно, ведь Плей маркет – это один из крупнейших магазинов приложений....
Шапка для твиттера 1500х500
Please complete the security check to access www.canva.com Why do I have to complete a CAPTCHA? Completing the CAPTCHA proves...