Формулы поворота вокруг точки

Формулы поворота вокруг точки

Матрицей поворота (или матрицей направляющих косинусов) называется ортогональная матрица, которая используется для выполнения собственного ортогонального преобразования в евклидовом пространстве. При умножении любого вектора на матрицу поворота длина вектора сохраняется. Определитель матрицы поворота равен единице.
Обычно считают, что, в отличие от матрицы перехода при повороте системы координат (базиса), при умножении на матрицу поворота вектора-столбца координаты вектора преобразуются в соответствии с поворотом самого вектора (а не поворотом координатных осей; то есть при этом координаты повернутого вектора получаются в той же, неподвижной системе координат). Однако отличие той и другой матрицы лишь в знаке угла поворота, и одна может быть получена из другой заменой угла поворота на противоположный; та и другая взаимно обратны и могут быть получены друг из друга транспонированием.

Матрица поворота в трёхмерном пространстве

Любое вращение в трехмерном пространстве может быть представлено как композиция поворотов вокруг трех ортогональных осей (например, вокруг осей декартовых координат). Этой композиции соответствует матрица, равная произведению соответствующих трех матриц поворота.
Матрицами вращения вокруг оси декартовой системы координат на угол α в трёхмерном пространстве являются:
Вращение вокруг оси x:

Вращение вокруг оси y:

Вращение вокруг оси z:

После преобразований мы получаем формулы:
По оси Х
x’=x;
y’:=y*cos(L)+z*sin(L) ;
z’:=-y*sin(L)+z*cos(L) ;

По оси Y
x’=x*cos(L)+z*sin(L);
y’=y;
z’=-x*sin(L)+z*cos(L);

По оси Z
x’=x*cos(L)-y*sin(L);
y’=-x*sin(L)+y*cos(L);
z’=z;

Все три поворота делаются независимо друг от друга, т.е. если надо повернуть вокруг осей Ox и Oy, вначале делается поворот вокруг оси Ox, потом применительно к полученной точки делается поворот вокруг оси Oy.

Положительным углам при этом соответствует вращение вектора против часовой стрелки в правой системе координат, и по часовой стрелке в левой системе координат, если смотреть против направления соответствующей оси. Правая система координат связана с выбором правого базиса (см. правило буравчика).

В двумерном пространстве поворот можно описать одним углом со следующей матрицей линейного преобразования в декартовой системе координат:

Поворот выполняется путём умножения матрицы поворота на вектор-столбец, описывающий вращаемую точку:

.

Координаты (x’,y’) в результате поворота точки (x,y) имеют вид:

,

.

Положительным углам при этом соответствует вращение вектора против часовой стрелки в обычной, правосторонней системе координат, и по часовой стрелке в левосторонней системе координат.

[править] Матрица поворота в трёхмерном пространстве

Матрицами вращения вокруг оси декартовой системы координат на угол α в трёхмерном пространстве являются:

· Вращение вокруг оси x:

,

· Вращение вокруг оси y:

,

· Вращение вокруг оси z:

.

Положительным углам при этом соответствует вращение вектора против часовой стрелки в правой системе координат, и по часовой стрелке в левой системе координат, если смотреть на плоскость вращении со стороны полупространства, где значения координат оси, вокруг которой осуществляется поворот, положительные. Правая система координат связана с выбором правого базиса (см. правило буравчика).

Свойства матрицы поворота.

Свойства матрицы поворота

Если — матрица, задающая поворот вокруг оси на угол ϕ, то:

·

·

·

· (след матрицы вращения)

· (матрица имеет единичный определитель).

· если строки (или столбцы матрицы) рассматривать как координаты векторов , то верны следующие соотношения):

o

o

o

· Матрица обратного поворота получается обычным транспонированием матрицы прямого поворота, т. о. .

24. Алгоритм Брезенхема для растеризации отрезка.

Алгоритм Брезенхе́ма (англ. Bresenham’s line algorithm) — это алгоритм, определяющий, какие точки двумерного растра нужно закрасить, чтобы получить близкое приближение прямой линии между двумя заданными точками. Это один из старейших алгоритмов в машинной графике — он был разработан Джеком Е. Брезенхэмом (Jack E. Bresenham) в компании IBM в 1962 году. Алгоритм широко используется, в частности, для рисования линий на экране компьютера. Существует обобщение алгоритма Брезенхэма для построения кривых 2-го порядка.

Алгоритм

Отрезок проводится между двумя точками — (x0,y0) и (x1,y1), где в этих парах указаны колонка и строка, соответственно, номера которых растут вправо и вниз. Сначала мы будем предполагать, что наша линия идёт вниз и вправо, причём горизонтальное расстояние x1x0 превосходит вертикальное y1y0, т.е. наклон линии от горизонтали — менее 45°. Наша цель состоит в том, чтобы для каждой колонки x между x0 и x1, определить, какая строка y ближе всего к линии, и нарисовать точку (x,y).

Общая формула линии между двумя точками:

Поскольку мы знаем колонку x, то строка y получается округлением к целому следующего значения:

Однако, вычислять точное значение этого выражения нет необходимости. Достаточно заметить, что y растёт от y0 и за каждый шаг мы добавляем к x единицу и добавляем к y значение наклона

которое можно вычислить заранее. Более того, на каждом шаге мы делаем одно из двух: либо сохраняем тот же y, либо увеличиваем его на 1.

Что из этих двух выбрать — можно решить, отслеживая значение ошибки, которое означает — вертикальное расстояние между текущим значением y и точным значением y для текущего x. Всякий раз, когда мы увеличиваем x, мы увеличиваем значение ошибки на величину наклона s, приведённую выше. Если ошибка превысила 0.5, линия стала ближе к следующему y, поэтому мы увеличиваем y на единицу, одновременно уменьшая значение ошибки на 1. В реализации алгоритма, приведённой ниже, plot(x,y) рисует точку, а abs возвращает абсолютную величину числа:

function line(x0, x1, y0, y1) int deltax := abs(x1 — x0) int deltay := abs(y1 — y0) real error := 0 real deltaerr := deltay / deltax int y := y0 for x from x0 to x1 plot(x,y) error := error + deltaerr if error >= 0.5 y := y + 1 error := error — 1.0

Проблема такого подхода — в том, что с вещественными величинами, такими как error и deltaerr, компьютеры работают относительно медленно. Кроме того, при вычислениях с плавающей точкой может накапливаться ошибка. По этим причинам, лучше работать только с целыми числами. Это можно сделать, если умножить все используемые вещественные величины на deltax. Единственная проблема — с константой 0.5 — но в данном случае достаточно умножить обе части неравенства на 2. Получаем следующий код:

Умножение на 2 для целых чисел реализуется битовым сдвигом влево.

Теперь мы можем быстро рисовать линии, направленные вправо-вниз с величиной наклона меньше 1. Осталось распространить алгоритм на рисование во всех направлениях. Это достигается за счёт зеркальных отражений, т.е. заменой знака (шаг в 1 заменяется на -1), обменом переменных x и y, обменом координат начала отрезка с координатами конца.

[править] Рисование линий

Реализация на C++:

void drawLine(int x1, int y1, int x2, int y2) < int deltaX = abs(x2 — x1); int deltaY = abs(y2 — y1); int signX = x1 -deltaY) < error -= deltaY; x1 += signX; >if(error2 = 0) drawpixel(X1 + x, Y1 + y) drawpixel(X1 + x, Y1 — y) drawpixel(X1 — x, Y1 + y) drawpixel(X1 — x, Y1 — y) error = 2 * (delta + y) — 1 if ((delta 0) && (error > 0)) delta += 1 — 2 * —y continue x++ delta += 2 * (x — y) y—

Алгоритм сглаживания Ву.

Алгоритм Ву — это алгоритм разложения отрезка в растр со сглаживанием. Был предложен У Сяолинем (Xiaolin Wu, отсюда устоявшееся в русском языке название алгоритма) в статье, опубликованной журналом Computer Graphics в июле 1991 года. Алгоритм сочетает высококачественное устранение ступенчатости и скорость, близкую к скорости алгоритма Брезенхема без сглаживания.

Алгоритм

Горизонтальные и вертикальные линии не требуют никакого сглаживания, поэтому их рисование выполняется отдельно. Для остальных линий алгоритм Ву проходит их вдоль основной оси, подбирая координаты по неосновной оси аналогично алгоритму Брезенхема. Отличие состоит в том, что в алгоритме Ву на каждом шаге устанавливается не одна, а две точки. Например, если основной осью является Х, то рассматриваются точки с координатами (х, у) и (х, у+1). В зависимости от величины ошибки, которая показывает как далеко ушли пиксели от идеальной линии по неосновной оси, распределяется интенсивность между этими двумя точками. Чем больше удалена точка от идеальной линии, тем меньше ее интенсивность. Значения интенсивности двух пикселей всегда дают в сумме единицу, то есть это интенсивность одного пикселя, в точности попавшего на идеальную линию. Такое распределение придаст линии одинаковую интенсивность на всем ее протяжении, создавая при этом иллюзию, что точки расположены вдоль линии не по две, а по одной.

Результат работы алгоритма

Реализация в псевдокоде (только для линии по x):

function plot(x, y, c) is // рисует точку с координатами (x, y) // и яркостью c (где 0 ≤ c ≤ 1) function ipart(x) is return целая часть от x function round(x) is return ipart(x + 0.5) // округление до ближайшего целого function fpart(x) is return дробная часть x function draw_line(x1,y1,x2,y2) is if x2 BColor) and (C<>Color) then

PutPixel (x, y, Color);

PixelFill (x+1, y, BColor, Color);

PixelFill (x, y+1, BColor, Color);

PixelFill (x-1, y, BColor, Color);

PixelFill (x, y-1, BColor, Color);

Этот алгоритм не оптимизирован относительно использования стековой памяти и является одним из самых медленных алгоритмов закрашивания (в среднем только один из четырёх вызовов используется для закрашивания). Алгоритм не может заполнить области, ограниченные цветом заполнения. Можно построить подобный алгоритм и без рекурсии, если вместо стека использовать массивы.

Алгоритм закрашивания линиями.

Данный алгоритм получил широкое распространение в компьютерной графике. От приведенного ранее он отличается тем, что на каждом шаге закрашивания рисуется горизонтальная линия, которая размещается между пикселями контура. Данный алгоритм также рекурсивный, однако количество вложенных вызовов гораздо меньше (пропорционально длине линии). Схема алгоритма такова (см.рис.):

1.Имеется затравочная точка с координатами (xst, yst) и начальное направление действия рекурсивных вызовов dir=1. Параметры левой и правой границы вначале совпадают с координатой затравочной точки: xPL = xst, xPR = xst. Вызывается процедура LineFill, в которой:

2.Находятся xL и xR – левая и правая границы, между которыми проводится текущая горизонтальная линия.

3.Делается приращение у=у+dir и, между xL и xR, анализируется цвет пикселей над линией. Если он не совпадает с цветом заполнения, процедура LineFill вызывается рекурсивно с dir = 1 и xPL = xL, xLR = xR.

4.Делается приращение y=y–dir и, начиная от xL до предыдущего значения xPL анализируется цвет пикселей под линией. Если цвет пикселя отличается от цвета заполнения, процедура вызывается рекурсивно с dir = –1 и xPL = xL, xPR = xR.

5.Продолжая по той же горизонтали от предыдущего xPR до xR анализируется цвет под линией. Если цвет какого-либо пикселя отличается от цвета заполнения, процедура вызывается рекурсивно с dir = –1 и xPL = xL, xPR = xR.
Ниже приведен пример реализации этого алгоритма на языке С++:

void LineFill (int x, int y, int dir, int xPL, int xPR)

// в этой переменной будет храниться цвет пикселя

// УСТАНАВЛИВАЕМ ТЕКУЩИЕ ГРАНИЦЫ xL И xR

color = GetPixel (—xL,y);

// xL=xL-1 помещается в вызов функции

while (color != bcolor); // bcolor – цвет границы

color = GetPixel (++xR,y);

while (color !=bcolor);

Line (xL,y, xR,y, Mycolor);

//это может быть любая функция рисования линии

// АНАЛИЗИРУЕМ ПИКСЕЛИ НАД ЛИНИЕЙ

Описание алгоритма

Алгоритм разделяет плоскость на 9 частей прямыми, которые образуют стороны прямоугольника. Каждой из 9 частей присваивается четырёхбитный код. Биты (от младшего до старшего) значат «левее», «правее», «ниже», «выше». Иными словами, у тех трёх частей плоскости, которые слева от прямоугольника, младший бит равен 1, и так далее.

Алгоритм определяет код конечных точек отрезка. Если оба кода равны нулю, то отрезок полностью находится в прямоугольнике. Если битовое И кодов не равно нулю, то отрезок не пересекает прямоугольник (т.к. это значит, что обе конечные точки отрезка находятся с одной стороны прямоугольника). В прочих случаях, алгоритм выбирает конечную точку, находящуюся вне прямоугольника, находит ближайшую к ней точку пересечения отрезка с одной из линий, образующей стороны прямоугольника, и использует эту точку пересечения как новую конечную точку отрезка. Укороченный отрезок снова пропускается через алгоритм.

Реализация алгоритма для трёхмерной модели идентична двумерной реализации, за исключением того, что вместо четырёхразрядного кода применяется шестиразрядный (дополнительные два бита глубины).

28. Алгоритм разбиения средней точкой.

Последнее изменение этой страницы: 2016-04-21; Нарушение авторского права страницы

Двумерный алгоритм преобразование в новые координаты

  • Введение
  • Поворот
  • Матричная запись

Поворот.

Пусть необходимо повернуть точку P(x, y) вокруг начала координат O на угол (фи) . Изображение новой точки на рис. 2.2. обозначим через P’(x’, y’). Всегда существуют четыре числа a, b, c, d, такие, что новые координаты могут быть вычислены по значениям старых координат x и y из следующей системы уравнений:

(2.1)

Для получения значений a, b, c, d рассмотрим вначале точку (x, y) = (1, 0). Полагая x =1 и y =0 в уравнении (2.1), получим

Но в этом простом случае, как это видно из рис. 2.3(а), значения x’ и y’ равны соответственно Cos (фи) и Sin (фи). Тогда будем иметь:

Аналогичным образом из рис. 2.3(б) следует

Тогда вместо системы уравнений (2.1) можем записать

(2.2)

Система уравнений (2.2) описывает поворот вокруг точки O — начала системы координат. Но часто это не то, что нам нужно. Если требуется выполнить поворот относительно заданной точки, то в этих уравнениях можно заменить: x — на (x-xo) , y — на (y-yo), x’ — на (x`-xo) и y’ — на (y`-yo) (сдвигаем систему координат) .

Система уравнений, которая описывает поворот точки вокруг любой точки:

(2.3)

Система уравнений (2.3) неудобна для реализации на PC. Применяем матричную запись.

Ссылка на основную публикацию
Фейковая карта visa с деньгами
Getting a valid Visa credit card number Visa credit card number (Bulk Generate Visa Cards) To check if your credit...
Удаленная игра на ps4
Использование приложения (Дистанционное воспроизведение PS4) для управления системой PlayStation®4 с компьютера. При установке этого приложения на ПК или Mac можно...
Удаленное подключение к virtualbox
Содержание статьи Если хоть раз попробуешь установить Linux под VirtualBox’ом, может сложиться впечатление, что это очень простой инструмент. Интерфейс виртуальной...
Фейсбук страница владимира панаева
с 16 по 26 Декабря Поволжское отделение Российской академии художеств Лаврушинский пер., д. 15Москва 15 декабря в 18.00 в Координационном...