Формула расстояния между двумя прямыми в пространстве

Формула расстояния между двумя прямыми в пространстве

Для решения задачи по стереометрии координатным методом нужно выбрать декартову систему координат. Ее можно выбрать как угодно, главное, чтобы она была удобной. Приведем примеры выбора системы координат в кубе, пирамиде и конусе:

Далее необходимо найти координаты основных точек в выбранной системе координат. Это могут быть вершины объемной фигуры, середины ребер или любые другие точки, указанные в условии задачи. Найдем координаты куба и правильной пирамиды (предположим, что все ребра равны (4)):

Куб: Очевидно, что координаты точки (A) в начале координат — ((0;0;0)). т. (B) — ((4;0;0)), т. (G) — ((4;4;4)) и т.д. (Рис. 1).

С кубом все просто, но в других фигурах могут возникнуть трудности с нахождением координат.

Давайте рассмотрим правильную пирамиду (ABCD):

    У (т. A) координаты ((0;0;0)), потому что она лежит в начале координат.

Координату (x) точки (С) можно получить, опустив перпендикуляр (CE) из (т.С) на ось (OX). (см. Рис. 2). Получится (т.E), указывающая на искомую координату по (x) – 2.

Координату (y) точки (С) тоже получаем, опустив перпендикуляр (CF) на ось (OY). Координата (y) (т.С) будет равна длине отрезка (AF=CE). Найдем его по теореме Пифагора из треугольника (AFC): $$ ^2=^2+^2,$$ $$ 4^2=2^2+^2,$$ $$ CE=sqrt<12>. $$ Координата (z) точки (C), очевидно, равна (0), потому что (т.С) лежит в плоскости (XOY). $$ C (2;sqrt<12>; 0). $$

И найдем координаты вершины пирамиды ((т.D)). (Рис. 3) Координаты (X) и (Y) у точки (D) совпадают с координатами (X) и (Y) у точки (H). Напомню, что высота правильной треугольной пирамиды падает в точку пересечения медиан, биссектрис и высот. Отрезок (EH=frac<1><3>*CE=frac<1><3>*sqrt<12>) (медианы в треугольнике точкой пересечения делятся в отношении как (frac<1><3>)) и равен координате точки (D) по (Y). Длина отрезка (IH=2) будет равна координате точки (D) по (X). А координата по оси (Z) равна высоте пирамиде: $$ ^2=^2+^2, $$ $$ =sqrt<4^2-<frac<2><3>*AF>^2>, $$ $$ =frac<32><3>. $$ $$ D (2, frac<1><3>*sqrt<12>, frac<32><3>). $$

Координаты вектора

Вектор – отрезок, имеющий длину и указывающий направление.

На самом деле, понимать, что такое вектор для решения задач методом координат необязательно. Можно просто использовать это понятие, как необходимый инструмент для решения задач по стереометрии. Любое ребро или отрезок на нашей фигуре мы будем называть вектором.

Для того, чтобы определить координаты вектора, нужно из координат конечной точки вычесть координаты начальной точки. Пусть у нас есть две точки (Рис. 4) : $$ т.А(x_A,y_A,z_A); $$ $$ т.B(x_B,y_B,z_B); $$ Тогда координаты вектора (vec) можно определить по формуле: $$ vec=. $$

Скрещивающиеся прямые

И так, мы научились находить координаты точек, и при помощи них определять координаты векторов. Теперь познакомимся с формулой нахождения косинуса угла между скрещивающимися прямыми (векторами). Пусть даны два вектора: $$ a=;$$ $$ b=; $$ тогда угол (alpha) между ними находится по формуле: $$ cos<alpha>=frac<sqrt<^2+^2+^2>*sqrt<^2+^2+^2>>. $$

Уравнение плоскости

В задачах №14 (С2) ЕГЭ по профильной математике часто требуется найти угол между прямой и плоскостью и расстояние между скрещивающимися прямыми. Но для этого вы должны уметь выводить уравнение плоскости. В общем виде уравнение плоскости задается формулой: $$ A*x+B*y+C*z+D=0,$$ где (A,B,C,D) – какие-то числа.

Если найти (A,B,C,D), то мы мы найдем уравнений плоскости. Плоскость однозначно задается тремя точками в пространстве, значит нужно найти координаты трех точек, лежащий в данной плоскости, а потом подставить их в общее уравнение плоскости.

Например, пусть даны три точки:

Подставим координаты точек в общее уравнение плоскости:

$$egin A*x_K+B*y_K+C*z_K+D=0,\ A*x_L+B*y_L+C*z_L+D=0, \ A*x_P+B*y_P+C*z_P+D=0.end$$

Получилась система из трех уравнений, но неизвестных 4: (A,B,C,D). Если наша плоскость не проходит через начало координат, то мы можем (D) приравнять (1), если же проходит, то (D=0). Объяснение этому простое: вы можете поделить каждое ваше уравнения на (D), от этого уравнение не изменится, но вместо (D) будет стоять (1), а остальные коэффициенты будут в (D) раз меньше.

Теперь у нас есть три уравнения и три неизвестные – можем решить систему:

Найти уравнение плоскости, проходящей через точки $$ K(1;2;3);,P(0;1;0);,L(1;1;1). $$ Подставим координаты точек в уравнение плоскости (D=1): $$egin A*1+B*2+C*3+1=0,\ A*0+B*1+C*0+1=0, \ A*1+B*1+C*1+1=0.end$$ $$egin A+2*B+3*C+1=0,\ B+1=0, \ A+B+C+1=0.end$$ $$egin A-2+3*C+1=0,\ B=-1, \ A=-C.end$$ $$egin A=-0.5,\ B=-1, \ C=0.5.end$$ Получаем искомое уравнение плоскости: $$ -0.5x-y+0.5z+1=0.$$

Расстояние от точки до плоскости

Зная координаты некоторой точки (M(x_M;y_M;z_M)), легко найти расстояние до плоскости (Ax+By+Cz+D=0:) $$
ho=frac<|A*x_M+B*y_M+C*z_M+D|><sqrt>. $$

Найдите расстояние от т. (H (1;2;0)) до плоскости, заданной уравнением $$ 2*x+3*y-sqrt<2>*z+4=0.$$

Из уравнения плоскости сразу находим коэффициенты: $$ A=2,,B=3,,C=-sqrt<2>,,D=4.$$ Подставим их в формулу для нахождения расстояния от точки до плоскости. $$
ho=frac<|2*1+3*2-sqrt<2>*0+4|><sqrt<2^2+3^2+<-sqrt<2>>^2>>. $$ $$
ho=frac<12><sqrt<16>>=3.$$

Расстояние между скрещивающимися прямыми

Расстояние между скрещивающимися прямыми – это расстояние от любой точки одной из прямых до параллельной ей плоскости, проходящей через вторую прямую.

Таким образом, если требуется найти расстояние между скрещивающимися прямыми, то нужно через одну из них провести плоскость параллельно второй прямой. Затем найти уравнение этой плоскости и по формуле расстояния от точки до плоскости найти расстояние между скрещивающимися прямыми. Точку на прямой можно выбрать произвольно (у которой легче всего найти координаты).

Рассмотрим задачу из досрочного ЕГЭ по математике 2018 года.

Дана правильная треугольная призма (ABCFDE), ребра которой равны 2. Точка (G) — середина ребра (CE).

  • Докажите, что прямые (AD) и (BG) перпендикулярны.
  • Найдите расстояние между прямыми (AD) и (BG).

Решим задачу полностью методом координат.

Нарисуем рисунок и выберем декартову систему координат. (Рис 5).

  • +7 (953) 35-222-89
  • Санкт-Петербург, Лиговский пр.52
  • Kyziaha@gmail.com

Метод координат (расстояние между точкой и плоскостью, между прямыми)

Расстояние между точкой и плоскостью.

Расстояние между точкой и прямой.

Расстояние между двумя прямыми.

Первое, что полезно знать, это как найти расстояние от точки до плоскости:

Значения A, B, C, D — коэффициенты плоскости

x, y, z — координаты точки

Задача. Найти расстояние между точкой А = (3; 7; −2) и плоскостью 4x + 3y + 13z — 20 = 0.

Все дано, можно сразу подставить значения в уравнение:

Задача. Найдите расстояние от точки К = (1; −2; 7) до прямой, проходящей через точки V = (8; 6; −13) и T = (−1; −6; 7).

  1. Находим вектор прямой.
  2. Вычисляем вектор, проходящий через искомую точку и любую точку на прямой.
  3. Задаем матрицу и находим определитель по двум полученным векторам в 1-ом и 2-ом пункте.
  4. Расстояние получим, когда квадратный корень из суммы квадратов коэффициентов матрицы поделим на длину вектора, который задает прямую (Думаю непонятно, поэтому перейдем к конкретному примеру).

1) TV = (8−(−1); 6−(−6); -13-7) = (9; 12; −20)

2) Вектор найдем через точки K и T, хотя так же можно было бы через K и V или любую другую точку на данной прямой.

TK = (1−(−1); −2−(−6); 7-7) = (2; 4; 0)

3) П олучится м атрица без коэффициента D (здесь он не нужен для решения):

Если непонятно, как получить матрицу и ее определитель, смотрите здесь более подробный разбор.

4) Плоскость получилась с коэффициентами А = 80, В = 40, С = 12,

x, y, z — координаты вектора прямой, в данном случае — вектор TV имеет координаты (9; 12; −20)

Задача. Найти расстояние между прямой, проходящей через точки Е = (1; 0; −2), G = (2; 2; −1), и прямой, проходящей через точки M = (4; −1; 4), L = (−2; 3; 0).

  1. Задаем векторы обеих прямых.
  2. Находим вектор, взяв по одной точке с каждой прямой.
  3. Записываем матрицу из 3-х векторов (две строчки из 1-го пункта, одна строчка из 2-го) и находим ее численный определитель.
  4. Задаем матрицу из двух первых векторов (в пункте 1). Первую строчку задаем как x, y, z.
  5. Расстояние получим, когда разделим получившееся значение из пункта 3 по модулю на квадратный корень из суммы квадратов пункта 4.

Перейдем к цифрам:

1) EG = (2−1; 2−0; −1−2) = (1; 2; −3)

ML = (−2−4; 3−(−1); 0−4) = (−6; 4; −4)

2) Найдем вектор EM (можно было так же найти EL или GM, или GL).

EM = (1−4; 0−(−1); −2−4) = (−3; 1; −6)

3) Составляем матрицу из трех выше найденных векторов и находим определитель.

4) Составляем матрицу из первых двух выше найденных векторов и находим определитель

без коэффициента D (здесь он не нужен для решения).

Вспомним, что уравнение плоскости задается так:

В нашем случае А = 4, В = 22, С = 16, D = 0.

5) Итоговая формула выглядит так, где L= −86 (из 3 пункта)

(<color< extbf<Факт 1. Про векторы>>>)
(ullet) Если в пространстве заданы две точки (A(x_1;y_1;z_1)) и (B(x_2;y_2;z_2)) , то вектор (overrightarrow) имеет координаты [overrightarrow = \]
(ullet) Если в пространстве заданы два вектора (vec =\) и (vec= \) , то:

(qquad lacktriangleright) разность этих векторов (vec-vec=\)

(ullet) Справедливы следующие утверждения:

I. Скалярное произведение ненулевых векторов (их длины не равны нулю) равно нулю тогда и только тогда, когда они перпендикулярны: [(vec, vec)=0 quadLeftrightarrowquad vecperp vec]

II. Длина вектора равна квадратному корню из скалярного произведения вектора на себя: [|vec|=sqrt<(vec, vec)>]

III. Переместительный закон: [(vec, vec)=(vec, vec)]

(<color< extbf<Факт 3. Про уравнение плоскости>>>)
(ullet) Если (vec=\) – нормаль к плоскости, то уравнение плоскости имеет вид [ax+by+cz+d=0] Для того, чтобы найти (d) , нужно подставить в уравнение плоскости вместо (x, y, z) координаты любой точки, лежащей в этой плоскости. Пример: если (vec=<1;2;3>) – нормаль к плоскости, (O(4;5;6)) – точка из плоскости, то справедливо: (1cdot 4+2cdot 5+3cdot 6+d=0) , откуда (d=-32) , следовательно, уравнение плоскости имеет вид (x+2y+3z-32=0) . (ullet) Уравнение плоскости можно составить, используя три точки из плоскости, не лежащие на одной прямой.
Пусть (A(1;0;0), B(0;3;4), C(2;0;5)) – точки из плоскости. Тогда уравнение плоскости можно найти, решив систему: [egin 1cdot a+0cdot b+0cdot c+d=0\ 0cdot a+3cdot b+4cdot c+d=0\ 2cdot a+0cdot b+5cdot c+d=0end quadRightarrowquad egin d=-a\ 3b+4c-a=0\ a+5c=0endquadRightarrowquad egin d=-a\ a=-5c\ b=-3cendquadRightarrowquadegina=-5c\ b=-3c\ d=5cend] Следовательно, уравнение плоскости имеет вид: [-5ccdot x-3ccdot y+ccdot z+5c=0] Можно разделить обе части на (c) , так как (c
e 0) (иначе (a=b=c=d=0) ), следовательно, уравнение плоскости имеет вид [-5x-3y+z+5=0]

(<color< extbf<Факт 5. Про расстояния от точки до плоскости, между скрещивающимися прямыми>>>)
(ullet) Если (M(x_0;y_0;z_0)) — некоторая точка вне плоскости (phi) , (ax+by+cz+d=0) — уравнение плоскости (phi) , то расстояние от точки (M) до плоскости (phi) ищется по формуле: [
ho(M, phi)=dfrac<|ax_0+by_0+cz_0+d|><sqrt>]
(ullet) Для того, чтобы найти расстояние между скрещивающимися прямыми, нужно
— построить плоскость, проходящую через одну из них и параллельную другой;
— найти уравнение этой плоскости;
— найти расстояние от любой точки первой прямой до этой плоскости.

Ссылка на основную публикацию
Фейковая карта visa с деньгами
Getting a valid Visa credit card number Visa credit card number (Bulk Generate Visa Cards) To check if your credit...
Удаленная игра на ps4
Использование приложения (Дистанционное воспроизведение PS4) для управления системой PlayStation®4 с компьютера. При установке этого приложения на ПК или Mac можно...
Удаленное подключение к virtualbox
Содержание статьи Если хоть раз попробуешь установить Linux под VirtualBox’ом, может сложиться впечатление, что это очень простой инструмент. Интерфейс виртуальной...
Фейсбук страница владимира панаева
с 16 по 26 Декабря Поволжское отделение Российской академии художеств Лаврушинский пер., д. 15Москва 15 декабря в 18.00 в Координационном...