Формула длины отрезка через координаты

Формула длины отрезка через координаты

На данной странице калькулятор поможет найти координаты между двумя точками онлайн в плоскости и пространстве. Для расчета задайте координаты.

Середина между двумя точками

Формула вычисления середины отрезка A(xa; ya) и B(xb; yb) на плоскости:

Вывод формулы для вычисления расстояния между двумя точками на плоскости

Из точек A и B опустим перпендикуляры на оси координат x и y.

Рассмотрим прямоугольный треугольник ∆ABC. Катеты этого треугольника равны:

Спомощью теоремы Пифагора, вычислим длину отрезка AB:

Подставив в это выражение длины отрезков AC и BC, выраженные через координаты точек A и B, получим формулу для вычисления расстояния между точками на плоскости.

Формула для вычисления расстояния между двумя точками в пространстве выводится аналогично.

Длина отрезка. Существует целая группа заданий (входящих в экзаменационные типы задач), связанная с координатной плоскостью. Это задачи начиная с самых элементарных, которые решаются устно (определение ординаты или абсциссы заданной точки, либо точки симметричной заданной и другие), заканчивая задачами в которых требуется качественное знание, понимание и хорошие навыки (задачи связанные с угловым коэффициентом прямой).

Постепенно мы с вами рассмотрим все их. В этой статье начнём с элементарных. Это простые задачи на определение: абсциссы и ординаты точки, длинны отрезка, середины отрезка, синуса или косинуса угла наклона прямой. Большинству эти задания будут не интересны. Но изложить их считаю необходимым.

Дело в том, что не все учатся в школе. Очень многие сдают ЕГЭ спустя 3-4 и более лет после её окончания и что такое абсцисса и ордината помнят смутно. Будем разбирать и другие задачи, связанные с координатной плоскостью, не пропустите, подпишитесь, на обновление блога. Теперь н емного теории.

Построим на координатной плоскости точку А с координатами х= 6, y=3.

Говорят, что абсцисса точки А равна шести, ордината точки А равна трём.

Если выразиться просто, то ось ох это ось абсцисс, ось оу это ость ординат.

То есть, абсцисса это точка на оси ох в которую проецируется точка заданная на координатной плоскости; ордината это точка на оси оу в которую проецируется оговоренная точка.

Длина отрезка на координатной плоскости

Формула для определения длины отрезка, если известны координаты его концов:

Как вы видите, длина отрезка — это длина гипотенузы в прямоугольными треугольнике с катетами равными

Середина отрезка. Её Координаты.

Формула для нахождения координат середины отрезка:

Уравнение прямой проходящей через две данные точки

Формула уравнения прямой походящей через две данные точки имеет вид:

Подставив значения координат в формулу, она приводится к виду:

y = kx + b, где k — это угловой коэффициент прямой

Эта информация нам понадобиться при решении другой группы задач связанных с координатной плоскостью. Статья об этом будет, не пропустите!

Что ещё можно добавить?

Угол наклона прямой (или отрезка) это угол между осью оХ и этой прямой, лежит в пределах от 0 до 180 градусов.

Из точки (6;8) опущен перпендикуляр на ось ординат. Найдите ординату основания перпендикуляра.

Основание перпендикуляра опущенного на ось ординат будет иметь координаты (0;8). Ордината равна восьми.

Найдите расстояние от точки A с координатами (6;8) до оси ординат.

Расстояние от точки А до оси ординат равно абсциссе точки А.

Найдите ординату точки, симметричной точке A(6;8) относительно оси Ox.

Точка симметричная точке А относительно оси оХ имеет координаты (6;– 8).

Ордината равна минус восьми.

Найдите ординату точки, симметричной точке A(6;8) относительно начала координат.

Точка симметричная точке А относительно начала координат имеет координаты (– 6;– 8).

Её ордината равна – 8.

Найдите абсциссу середины отрезка, соединяющего точки O (0;0) и A (6;8).

Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (0;0) и (6;8).

Вычисляем по формуле:

Получили (3;4). Абсцисса равна трём.

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку. Середину отрезка несложно будет определить по клеткам.

Найдите абсциссу середины отрезка, соединяющего точки A(6;8) и B(–2;2).

Для того, решить поставленную задачу необходимо найти координаты середины отрезка. Координаты концов нашего отрезка (–2;2) и (6;8).

Вычисляем по формуле:

Получили (2;5). Абсцисса равна двум.

*Абсциссу середины отрезка можно определить без вычисления по формуле, построив данный отрезок на координатной плоскости на листе в клетку.

Найдите длину отрезка, соединяющего точки (0;0) и (6;8).

Длина отрезка при данных координатах его концов вычисляется по формуле:

в нашем случае имеем О(0;0) и А(6;8). Значит,

*Порядок координат при вычитании не имеет значения. Можно из абсциссы и ординаты точки О вычесть абсциссу и ординату точки А:

Найдите косинус угла наклона отрезка, соединяющего точки O (0;0) и A (6;8), с осью абсцисс.

Угол наклона отрезка – это угол между этим отрезком и осью оХ.

Из точки А опустим перпендикуляр на ось оХ:

То есть, угол наклона отрезка это угол ВОА в прямоугольном треугольнике АВО.

Косинусом острого угла в прямоугольном треугольнике является

отношение прилежащего катета к гипотенузе

Необходимо найти гипотенузу ОА.

По теореме Пифагора: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Таким образом, косинус угла наклона равен 0,6

Из точки (6;8) опущен перпендикуляр на ось абсцисс. Найдите абсциссу основания перпендикуляра.

Через точку (6;8) проведена прямая, параллельная оси абсцисс. Найдите ординату ее точки пересечения с осью оУ.

Найдите расстояние от точки A с координатами (6;8) до оси абсцисс.

Найдите расстояние от точки A с координатами (6;8) до начала координат.

Найдите абсциссу точки, симметричной точке A(6,8) относительно оси оУ.

Найдите абсциссу точки, симметричной точке A(6,8) относительно начала координат.

Найдите ординату середины отрезка, соединяющего точки O (0;0) и A (6;8).

Найдите ординату середины отрезка, соединяющего точки A (6;8) и B (-2;2).

Найдите ординату точки пересечения оси оУ и отрезка, соединяющего точки A (6;8) и B (- 6;0).

Найдите длину отрезка, соединяющего точки А(6;8) и В(-2;2).

Найдите синус угла наклона отрезка, соединяющего точки O (0;0) и A (6;8), с осью абсцисс.

Это даже не задача, а вопрос.

Частенько Александр Васильевич Суворов, встречая любого подчинённого, который случайно попадался ему на глаза задавал вопрос, порой неожиданный. Однажды спросил офицера своей армии:"Сколько вёрст до луны?". Что тот ответил?

Первый, кто даст правильный ответ получит поощрительный приз — 100 рублей. Ответы пишите в комментариях.

Предлагаю вам воспользоваться онлайн калькулятором для вычисления расстояния между точками.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление расстояния между точками и закрепить пройденный материал.

Калькулятор для вычисления расстояния между двумя точками

Выберите необходимую вам размерность:

Введите координаты точек.

Ввод данных в калькулятор для вычисления расстояния между точками

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора для вычисления расстояния между точками

  • Используйте кнопки и на клавиатуре, для перемещения между полями калькулятора.

Теория. Расстояние между точками.

Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.

В зависимости от размерности задачи расстояние между двумя точками можно найти используя следующие формулы:

    Формула вычисления расстояния от точки A( xa , ya ) до точки B( xb , yb ) на плоскости:

Формула вычисления расстояния от точки A( xa , ya , za ) до точки B( xb , yb , zb ) в пространстве:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Ссылка на основную публикацию
Фейковая карта visa с деньгами
Getting a valid Visa credit card number Visa credit card number (Bulk Generate Visa Cards) To check if your credit...
Удаленная игра на ps4
Использование приложения (Дистанционное воспроизведение PS4) для управления системой PlayStation®4 с компьютера. При установке этого приложения на ПК или Mac можно...
Удаленное подключение к virtualbox
Содержание статьи Если хоть раз попробуешь установить Linux под VirtualBox’ом, может сложиться впечатление, что это очень простой инструмент. Интерфейс виртуальной...
Фейсбук страница владимира панаева
с 16 по 26 Декабря Поволжское отделение Российской академии художеств Лаврушинский пер., д. 15Москва 15 декабря в 18.00 в Координационном...