Что значит точный квадрат

Что значит точный квадрат

Здесь легко и интересно общаться. Присоединяйся!

например: 3 во второй степени (в квадрате) будет 9. 9 — точный квадрат, а 3 — его квадратный корень. 8 не является точным квадратом, поскольку не имеет квадратного корня.

Целое число, квадратный корень которого тоже целое число.

Из основной теоремы арифметики следует, что точный квадрат всегда имеет нечетное число делителей: если число $a=p_<1>^<alpha_<1>> imes p_<2>^<alpha_<2>> imesldots imes p_^<alpha_>$ есть точный квадрат, то показатели степеней $alpha_<1>,alpha_<2>,ldots,alpha_$, четны, а число делителей числа a, равное $(alpha_<1>+1)(alpha_<2>+1)ldots(alpha_+1)$ нечетно.

Точно так же у точного куба число делителей имеет вид 3n+1, у четвертой степени — число вида 4n+11 и т.д.

При работе со степенями целых и натуральных чисел всегда следует иметь в виду, что степень с большим показателем также является и степенью с маленьким показателем: например, а 100 — это одновременно и квадрат пятидесятой степени, и четвертая степень двадцать пятой степени, и пятая степень двадцатой степени, и т.п. Ясно, что показатель степени таким образом можно уменьшить для любого составного числа n, а для простого n это ничего не даст.

При решении задач полезным может оказаться следующее свойство точных квадратов:

Квадрат числа при делении на любое число дает тот же остаток, что и квадрат его остатка.

Действительно, если r — остаток от деления k на b, то k 2 и r 2 дают при делении на b один и тот же остаток: $k^2-r^2=(k-r)(k+r)$, а k-r делится на b.

Например, число k при делении на 6 может давать остатки 0, 1, 2, 3, 4, 5, их квадраты — 0, 1, 4, 9, 16, 25, а остатки от деления квадратов на 6 — это 0, 1, 4, 3, 4, 1. Таким образом, квадрат числа при делении на 6 не может давать остатков 2 и 5.

Теми же рассуждениями легко получить, что возможные остатки при делении точного квадрата на 3 и на 4 — это 0 или 1.

Пример 1: Является ли число $123^2+345^2+567^2$ точным квадратом?

Ответ: Все три числа в заданной сумме нечетны, следовательно, их квадраты имеют вид 4п+1, так что их сумма имеет вид 4т+3 и поэтому не является точным квадратом.

Пример 2: Является ли число $[50pi]^2+[100pi]^2$ точным квадратом?

Ответ: Поскольку числа $[50pi]$, $[100pi]$ — это на самом деле 157 и 314, то оба они не делятся на 3, и поэтому их квадраты имеют вид Зn+1, а сама заданная сумма имеет вид 3m+2 и, следовательно, не является точным квадратом

Пример 3: Доказать, что если два числа оба не делятся на 3, то их сумма не является точным квадратом.

Ответ: Так как квадрат любого натурального числа, не делящегося на 3, при делении на 3 дает остаток 1, то сумма любых двух таких чисел при делении на 3 дает остаток 2, а такое число не может быть точным квадратом.

Полный квадрат, или квадратное число, — число, являющееся квадратом некоторого целого числа. Иными словами, квадратом является целое число, квадратный корень из которого извлекается нацело. Геометрически такое число может быть представлено в виде площади квадрата с целочисленной стороной.

Например, 9 — это квадратное число, так как оно может быть записано в виде 3 × 3, а также представляет площадь квадрата со стороной, равной 3.

Квадратное число входит в категорию классических фигурных чисел.

Содержание

Примеры [ править | править код ]

Последовательность квадратов начинается так:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (последовательность A000290 в OEIS)

Таблица квадратов

_0 _1 _2 _3 _4 _5 _6 _7 _8 _9
0_ 0 1 4 9 16 25 36 49 64 81
1_ 100 121 144 169 196 225 256 289 324 361
2_ 400 441 484 529 576 625 676 729 784 841
3_ 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4_ 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5_ 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6_ 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7_ 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8_ 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9_ 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Представления и свойства [ править | править код ]

Квадрат натурального числа n <displaystyle n> можно представить в виде суммы первых n <displaystyle n> нечётных чисел:

1: 1 = 1 <displaystyle 1=1>
2: 4 = 1 + 3 <displaystyle 4=1+3>
.
7: 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13 <displaystyle 49=1+3+5+7+9+11+13>
.

Ещё один способ представления квадрата натурального числа:
n 2 = 1 + 1 + 2 + 2 + . . . + ( n − 1 ) + ( n − 1 ) + n <displaystyle n^<2>=1+1+2+2+. +(n-1)+(n-1)+n>
Пример:

1: 1 = 1 <displaystyle 1=1>
2: 4 = 1 + 1 + 2 <displaystyle 4=1+1+2>
.
4: 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4 <displaystyle 16=1+1+2+2+3+3+4>
.

Сумма квадратов первых n <displaystyle n> натуральных чисел вычисляется по формуле [1] :

∑ k = 1 n k 2 = 1 2 + 2 2 + 3 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 <displaystyle sum _^k^<2>=1^<2>+2^<2>+3^<2>+. +n^<2>=<frac <6>>>

Рассмотрим сумму кубов натуральных чисел от 1 до n + 1 <displaystyle n+1> :
∑ k = 1 n k 3 + ( n + 1 ) 3 = ∑ k = 0 n ( k + 1 ) 3 = ∑ k = 0 n ( k 3 + 3 k 2 + 3 k + 1 ) = ∑ k = 0 n k 3 + ∑ k = 0 n 3 k 2 + ∑ k = 0 n 3 k + ∑ k = 0 n 1 = ∑ k = 0 n k 3 + 3 ∑ k = 0 n k 2 + 3 ∑ k = 0 n k + ∑ k = 0 n 1 <displaystyle sum _^k^<3>+(n+1)^<3>=sum _^(k+1)^<3>=sum _^(k^<3>+3k^<2>+3k+1)=sum _^k^<3>+sum _^3k^<2>+sum _^3k+sum _^1=sum _^k^<3>+3sum _^k^<2>+3sum _^k+sum _^1>
Получим:
( n + 1 ) 3 = 3 ∑ k = 0 n k 2 + 3 ∑ k = 0 n k + ∑ k = 0 n 1 = 3 ∑ k = 0 n k 2 + 3 ( n + 1 ) n 2 + ( n + 1 ) <displaystyle (n+1)^<3>=3sum _^
k^<2>+3sum _^k+sum _^1=3sum _^k^<2>+3<frac <(n+1)n><2>>+(n+1)>
Умножим на 2 и перегруппируем:
6 ∑ k = 0 n k 2 = 2 ( n + 1 ) 3 − 3 ( n + 1 ) n − 2 ( n + 1 ) = ( n + 1 ) ( 2 ( n + 1 ) 2 − 3 n − 2 ) = ( n + 1 ) ( 2 n 2 + n ) = n ( n + 1 ) ( 2 n + 1 ) <displaystyle 6sum _^
k^<2>=2(n+1)^<3>-3(n+1)n-2(n+1)=(n+1)(2(n+1)^<2>-3n-2)=(n+1)(2n^<2>+n)=n(n+1)(2n+1)>
∑ k = 0 n k 2 = n ( n + 1 ) ( 2 n + 1 ) 6 <displaystyle sum _^
k^<2>=<frac <6>>> (В рассуждениях использована формула: ∑ k = 0 n k = ( n + 1 ) n 2 <displaystyle sum _^k=<frac <(n+1)n><2>>> , вывод которой аналогичен приведенному)

Способ 2, метод неизвестных коэффициентов:

Заметим, что сумма функций степени N <displaystyle N> может быть выражена как функция N + 1 <displaystyle N+1> степени. Исходя из этого факта предположим:
∑ k = 0 n k 2 = f ( n ) = A n 3 + B n 2 + C n + D <displaystyle sum _^k^<2>=f(n)=An^<3>+Bn^<2>+Cn+D>
f ( 0 ) = 0 ; f ( 1 ) = 1 ; f ( 2 ) = 5 ; f ( 3 ) = 14 <displaystyle f(0)=0;f(1)=1;f(2)=5;f(3)=14>
Получим систему линейных уравнений относительно искомых коэффициентов:
< 0 A + 0 B + 0 C + D = 0 A + B + C + D = 1 8 A + 4 B + 2 C + D = 5 27 A + 9 B + 3 C + D = 14 <displaystyle <egin0A+0B+0C+D=0\A+B+C+D=1\8A+4B+2C+D=5\27A+9B+3C+D=14\end>> Решив её, получим A = 1 3 , B = 1 2 , C = 1 6 , D = 0 <displaystyle A=<frac <1><3>>,B=<frac <1><2>>,C=<frac <1><6>>,D=0>
Таким образом:
∑ k = 0 n k 2 = f ( n ) = 1 3 n 3 + 1 2 n 2 + 1 6 n + 0 = n ( n + 1 ) ( 2 n + 1 ) 6 <displaystyle sum _^
k^<2>=f(n)=<frac <1><3>>n^<3>+<frac <1><2>>n^<2>+<frac <1><6>>n+0=<frac <6>>>

∑ n = 1 ∞ 1 n 2 = 1 1 2 + 1 2 2 + ⋯ + 1 n 2 + ⋯ = π 2 6 <displaystyle sum _^<infty ><frac <1><2>>>=<frac <1><1^<2>>>+<frac <1><2^<2>>>+dots +<frac <1><2>>>+dots =<frac <pi ^<2>><6>>>

Четыре различных квадрата не могут образовывать арифметическую прогрессию. [3] Арифметические прогрессии из трёх квадратов существуют — например: 1, 25, 49.

Каждое натуральное число может быть представлено как сумма четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов).

4900 — единственное число > 1, которое является одновременно квадратным и пирамидальным.

Суммы пар последовательных треугольных чисел являются квадратными числами.

В десятичной записи квадратные числа имеют следующие свойства:

Ссылка на основную публикацию
Что выбрать windows 7 или windows 10
Сегодня в нашем блоге «Чо?! Чо?!» я раскрою все преимущества и недостатки новой операционной системы для ноутбуков, сравнив ее с...
Хороший набор инструментов для автомобиля отзывы
Счастливым обладателям автомобилей необходимо иметь при себе инструменты, помогающие в чрезвычайной ситуации с машиной. Ежегодно выпускается большое количество разнообразных инструментов,...
Хонор похожий на айфон
Apple активно продвигает iPhone XS, но есть ли достойная альтернатива дорогому и в чём-то «сырому» устройству? Honor наносит ответный удар...
Что в китае дешевле чем в россии
Я экономлю тысячи рублей, покупая товары из Китая через интернет Сегодня я расскажу Вам о том, что выгодно покупать в...