Что такое решето эратосфена в математике

Что такое решето эратосфена в математике

Запишем натуральные числа начиная от 2 до 20 в ряд:

Первое число в списке 2 — простое. Пройдём по ряду чисел, вычёркивая все числа кратные 2 (каждое второе, начиная с 2 2 = 4 ):

Следующее невычеркнутое число 3 — простое. Пройдём по ряду чисел, вычёркивая все числа кратные 3 (каждое третье, начиная с 3 2 = 9 ):

Следующее невычеркнутое число 5 — простое. Пройдём по ряду чисел, вычёркивая все числа кратные 5 (каждое пятое, начиная с 5 2 = 25 ). И т. д.

Необходимо провести вычёркивания кратных для всех простых чисел p , для которых . В результате все составные числа будут вычеркнуты, а невычеркнутыми останутся все простые числа. Для n = 20 уже после вычёркивания кратных числу 3 все составные числа получаются вычеркнутыми.

См. также

Примеры реализации

Turbo Pascal

Wikimedia Foundation . 2010 .

Смотреть что такое "Эратосфена решето" в других словарях:

Эратосфена решето — метод в теории чисел, назван по имени Эратосфена, заключающийся в отсеивании (например, путём зачёркивания) тех целых чисел заданной последовательности а1, a2. aN (например, натурального ряда чисел), которые делятся хотя бы на одно из … Большая советская энциклопедия

ЭРАТОСФЕНА РЕШЕТО — метод, разработанный Эратосфеном (3 в. до н. э.) и позволяющий отсеивать составные числа из натурального ряда. Сущность Э. р. заключается в следующем. Зачеркивается единица. Число 2 простое. Зачеркиваются все натуральные числа, делящиеся на 2.… … Математическая энциклопедия

Решето Аткина — В математике решето Аткина быстрый современный алгоритм нахождения всех простых чисел до заданного целого числа N. Основная идея алгоритма состоит в использовании неприводимых квадратичных форм (представление чисел в виде ax²+by²).… … Википедия

Решето Сундарама — В математике решето Сундарама детерминированный алгоритм нахождения всех простых чисел до некоторого целого числа . Разработан индийским студентом С. П. Сундарамом в 1934 году. Содержание 1 Описание 2 Обоснование … Википедия

Решето Эратосфена — алгоритм нахождения всех простых чисел до некоторого целого числа n, который приписывают древнегреческому математику Эратосфену Киренскому. Содержание 1 Алгоритм … Википедия

Решето Эратосфена — этим именем называют следующий способ получения ряда простых чисел. Из ряда чисел 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. вычеркивают кратные двум; 4, 6, 8, 10, 12. кратные трем: 6, 9, 12, 15. кратные пяти: 10, 15, 20, 25, 30. … … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

БРУНА РЕШЕТО — один из решета методов в элементарной теории чисел, созданный В. Вруном [1]; является развитием Эратосфена решета. Метод Б. р. заключается в следующем: из последовательности натуральных чисел высеиваются (выбрасываются) числа с малыми простыми… … Математическая энциклопедия

Список алгоритмов — Эта страница информационный список. Основная статья: Алгоритм Ниже приводится список алгоритмов, группированный по категориям. Более детальные сведения приводятся в списке структур данных и … Википедия

Программируемые алгоритмы — Служебный список статей, созданный для координации работ по развитию темы. Данное предупреждение не устанавл … Википедия

Тест Миллера (теория чисел) — У этого термина существуют и другие значения, см. Тест Миллера. Не следует путать с «Тестом Миллера Рабина» вероятностным полиномиальным тестом простоты. Тест Миллера детерминированный полиномиальный тест простоты. В 1976 году Миллер… … Википедия

    Главная

  • Список секций
  • Математика
  • ПРОСТЫЕ ЧИСЛА И РЕШЕТО ЭРАТОСФЕНА

ПРОСТЫЕ ЧИСЛА И РЕШЕТО ЭРАТОСФЕНА

Автор работы награжден дипломом победителя III степени

Введение

Впервые о простых числах мы узнали в 6 классе на уроке математики, когда изучали тему «Простые и составные числа». Так же на форзаце учебника «Математика-6» имеется таблица простых чисел до числа 997 (Приложение 1). Мы знаем то, что находится на форзаце, имеет важную значимость в изучении данного предмета. И действительно, это подтвердилось при дальнейшем изучении математики

Мы заинтересовались происхождением простых чисел, алгоритмами нахождения простых чисел, алгоритмом создания таблиц простых чисел, в частности, «решетом Эратосфена».

Работу начали с анкетирования учащихся 6 – 10 классов нашей школы, чтобы выяснить знают ли они:

1. Что такое решето?

2. Какие числа называются простыми?

3. Кто такой Эратосфен?

4. Что такое «решето Эратосфена»?

В опросе приняли участие 90 человек. Результаты оказались следующими (Приложение 2).

Проанализировав ответы учащихся, мы убедились, что наша тема актуальна. Поэтому мы и решили глубже исследовать тему «Простые числа» и рассказать другим ученикам о простых числах на модели «решето Эратосфена».

Гипотеза: Действительно ли мы можем найти простое число больше 997.

Цель работы: изучить алгоритм построения «решета Эратосфена» и изготовить его материальную модель для использования на уроках математики.

Задачи:

1.Изучить имеющуюся литературу по теме проекта.

2.Провести опрос по теме проекта.

3.Найти простые числа, больше числа 997.

4.Изготовить материальную модель решета Эратосфена.

Объект исследования: простые числа, «решето Эратосфена»

Предмет исследования: таблица простых чисел

Методы исследования:

1.Работа с учебной и научно-популярной литературой, ресурсами сети Интернет.

3. Опыты и эксперименты с простыми числами

Этапы проекта:

2. Основная часть

2.1. Краткое описание используемых понятий

Решето – это утварь для просеивания муки, состоящая из широкого обруча и натянутой на него с одной стороны сетки. Решето отличается от сита более крупным размером отверстий сетки. (Толковый словарь Ушакова)

Решето -1) Предмет обихода широкий обруч с натянутой на него частой сеткой для просеивания чего-нибудь

2) Просеивающее устройство. (Толковый словарь Ожегова)

Решето – всякая несплошная вещь со сквозниной, с промежками, пролётами; ряд установленных жёрдочек, шестиков…переплетённых вдоль и поперёк, или иным образом.(Толковый словарь Даля)

Простое число – это натуральное число, которое не имеет других делителей кроме 1 и самого себя. (Пример: число 19 = 1 * 19)

Составное число – это натуральное число, у которого есть делители,отличные от 1 и самого себя. (Пример: число 10 = 5*2)

Всякое составное число можно разложить на простые множители.(Например: 63=3*3*7 или 363= 3*11*11)

Число 1 имеет только один делитель: само это число. Поэтому оно не относит ни к простым, ни к составным числам.

Первым проблему определения простых чисел обозначил и решил древнегреческий ученый Эратосфен Киренский примерно в 220 году до нашей эры, предложив один из алгоритмов определения простых чисел. Этот способ назвали «решето Эратосфена».

В 1909 году американский математик Деррик Норман Лемер опубликовал таблицы простых чисел в промежутке от 1 до 10.017.000. Книга таблиц имеется в Российской государственной библиотеке в Москве.

Еще более титаническую вычислительную работу выполнил профессор Парижского университета славянский математик Якуб Филипп Кулик (01.05.1793- 28.02.1863).Над своей рукописью «Великий канон делителей всех чисел, не делящихся на 2, 3 и 5, и заключенных между ними простых чисел до 100 300 201» он работал последние 20 лет жизни, не имея никакой надежды на его издание. Это произведение до сих пор не напечатано. Оно хранится в библиотеки Венской АкадемииНаук.

2.2. Биография Эратосфена

Вопросом изучения простых чисел, закономерности их появления и поиском самого большого простого числа математики занимаются очень давно. Первые сведения о простых числах, встречаются в трудах древне – греческого математика Эратосфена Киренского (276г.до н.э-194г. до н.э).

Греческий математик Эратосфен, живший более чем за 200 лет до н.э., составил первую таблицу простых чисел. Это один из самых разносторонних ученых античности. Особенно прославили Эратосфена труды по астрономии, географии и математике, однако он успешно трудился и в области филологии, поэзии, музыки и философии, за что современники дали ему прозвище Пентатл, т.е. Многоборец. Другое его прозвище Бета, т.е. «второй», возможно, также не содержит ничего уничижительного: им желали показать, что во всех науках Эратосфен достигает не высшего, но превосходного результата. Он первый вычислил окружность Земли, пользуясь методами геометрии.

Эратосфен родился в Африке, в Кирене. Учился сначала в Александрии, а затем в Афинах. Вероятно, именно благодаря столь широкому образованию и разнообразию интересов Эратосфен получил от Птолемея III приглашение вернуться в Александрию, чтобы стать воспитателем наследника престола и возглавить Александрийскую библиотеку (одну из первых библиотек в мире). В знаменитой библиотеке хранилось более 700 000 свитков, которые содержали все сведения о мире, известные людям той эпохи. Эратосфен принял это предложение и занимал должность библиотекаря вплоть до своей кончины. При содействии своих помощников Эратосфен первым рассортировал свитки по темам. Он дожил до глубокой старости, а когда ослеп, то перестал есть и умер от голода. Он не представлял себе жизни без возможности работать со своими любимыми книгами.

Его научные таланты удостоились высокой оценки современника Эратосфена, Архимеда, который посвятил ему свою книгу Эфодик (т.е. Метод)

2.3. Из истории появления «решета Эратосфена»

Эратосфен предложил способ нахождения простых чисел, который можно описать в виде следующего алгоритма.

1.Из ряда чисел: 2,3,4,5,6,7,8,9,10,11,12,13 и т. д вычёркиваем числа кратные 2.

2.Затем, вычёркиваем числа кратные 3.

3.Вычёркиваем числа кратные 4.

4.Вычёркиваем числа кратные 5.

5.Вычёркиваем числа кратные 6 .

6.Делим, пока все составные числа не будут «просеяны», и останутся только простые числа: 2,5,7,11,.13….

Пример

Запишем натуральные числа, начиная от 2 до 20 в ряд.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Первое число в списке 2 — простое. Пройдём по ряду чисел, вычёркивая все числа кратные 2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Следующее не вычеркнутое число 3 — простое. Пройдём по ряду чисел, вычёркивая все числа кратные 3

2 3 5 6 7 9 11 12 13 15 17 19

Процесс окончен. Все незачеркнутые числа последовательности являются простыми.

Так как греки делали записи на покрытых воском табличках или на натянутом папирусе, а числа не вычёркивали, а выкалывали иглой, то таблица в конце вычислений напоминала решето. Поэтому алгоритм Эратосфена называют решетом Эратосфена: в этом решете «отсеиваются» простые числа от составных. Таким способом в настоящее время составляют таблицы простых чисел, но уже с помощью вычислительных машин.

2.4. Практическая часть проекта: изготовление решета Эратосфена

Для изготовления «решета Эратосфена» мы взяли фанеру формата 36*42. Начертили сетку, в каждой клетке записали натуральные числа от 1001 до 1120.

Используя алгоритм построения «решета Эратосфена», проделали отверстия в тех клетках, в которых указаны составные числа.(Приложение 3)

Заключение

Мы изучили алгоритм построения «решета Эратосфена», изготовили его материальную модель, изучили литературу и провели опрос. Подтвердили гипотезу, что можно найти простое число, больше чем 997.

Следовательно – наша цель достигнута, проблема решена. Разработанные нами материалы могут использоваться на уроках математики.

Список использованной литературы

Я познаю мир. Детская энциклопедия: Математика/ Я 11 Авт.-сост. А.П. Савин и др.: — М.: ООО «Издательство АСТ», 2001.

Интернет – ресурсы( Википедия)

А.Г. Мерзляк, В.Б. Полонский, М.С. Якир. Учебник «Математика 6 класс»:Издательство «Вентана–Граф», Москва, 2014

Толковый словарь Ушакова

Толковый словарь Ожегова

Толковый словарь Даля

Приложение 1

таблица простых чисел

Приложение 2

Анкетирование

1. Что такое решето?

2. Какие числа называются простыми?

3. Кто такой Эратосфен?

4. Что такое «решето Эратосфена»?

В опросе приняли участие 90 человек. Результаты оказались следующими.

Вопрос

«да»

«нет»

Знаете ли вы что такое решето?

Знаете ли вы какие числа называются простыми?

Знаете ли вы кто такой Эратосфен?

Знаете ли вы что такое «решето Эратосфена»?

Вполне вероятно, что алгоритм, придуманный более 2000 лет назад греческим математиком Эратосфеном Киренским, был первым в своем роде. Его единственная задача – нахождение всех простых чисел до некоторого заданного числа N. Термин «решето» подразумевает фильтрацию, а именно фильтрацию всех чисел за исключением простых. Так, обработка алгоритмом числовой последовательности оставит лишь простые числа, все составные же отсеются.

Рассмотрим в общих чертах работу метода. Дана упорядоченная по возрастанию последовательность натуральных чисел. Следуя методу Эратосфена, возьмем некоторое число P изначально равное 2 – первому простому числу, и вычеркнем из последовательности все числа кратные P: 2P, 3P, 4P, …, iP (iP≤N). Далее, из получившегося списка в качестве P берется следующее за двойкой число – тройка, вычеркиваются все кратные ей числа (6, 9, 12, …). По такому принципу алгоритм продолжает выполняться для оставшейся части последовательности, отсеивая все составные числа в заданном диапазоне.

В приведенной таблице записаны натуральные числа от 2 до 100. Красным помечены те, которые удаляются в процессе выполнения алгоритма «Решето Эратосфена».

Программная реализация алгоритма Эратосфена потребует:

  1. организовать логический массив и присвоить его элементам из диапазона от 2 до N логическую единицу;
  2. в свободную переменную P записать число 2, являющееся первым простым числом;
  3. исключить из массива все числа кратные P 2 , ступая с шагом по P;
  4. записать в P следующее за ним не зачеркнутое число;
  5. повторять действия, описанные в двух предыдущих пунктах, пока это возможно.

Обратите внимание: на третьем шаге мы исключаем числа, начиная сразу с P 2 , это связано с тем, что все составные числа меньшие P будут уже зачеркнуты. Поэтому процесс фильтрации следует остановить, когда P 2 станет превышать N. Это важное замечание позволяет улучшить алгоритм, уменьшив число выполняемых операций.

Так будет выглядеть псевдокод алгоритма:

Он состоит из двух циклов: внешнего и внутреннего. Внешний цикл выполняется до тех пор, пока P 2 не превысит N. Само же P изменяется с шагом P+1. Внутренний цикл выполняется лишь в том случае, если на очередном шаге внешнего цикла окажется, что элемент с индексом P не зачеркнут. Именно во внутреннем цикле происходит отсеивание всех составных чисел.

Ссылка на основную публикацию
Что означает ошибка 110
Ошибка 110 в Android происходит главным образом при обновлении или установке приложений из Google Play. Случается это из-за несовместимости ОС:...
Что выбрать windows 7 или windows 10
Сегодня в нашем блоге «Чо?! Чо?!» я раскрою все преимущества и недостатки новой операционной системы для ноутбуков, сравнив ее с...
Что в китае дешевле чем в россии
Я экономлю тысячи рублей, покупая товары из Китая через интернет Сегодня я расскажу Вам о том, что выгодно покупать в...
Что означает ошибка 963
Ошибки в Google Play дело достаточно частое, это не удивительно, ведь Плей маркет – это один из крупнейших магазинов приложений....