Что такое алкалиновые батарейки

Что такое алкалиновые батарейки

Современный высокотехнологичный мир сложно себе представить без инновационной электронной техники. Для эксплуатации некоторых ее разновидностей требуются надежные элементы питания, в роли которых обычно используются стандартные пальчиковые батарейки. Мировой рынок предлагает потребителям различные варианты таких изделий, наибольшей популярностью среди которых пользуются солевые и алкалиновые. Чем они отличаются и какие лучше? Выяснили наши эксперты.

Солевые батарейки: особенности, устройство

Солевая батарейка долгое время считалась одним из наиболее востребованных элементов питания и это несмотря на практически не изменившийся с момента появления внешний вид и устройство. Сложно представить, но солевая батарейка практически 150 лет была лидером рынка электротоваров вплоть до недавнего времени. Идеальное сочетание качественных характеристик и умеренной цены позволяло уверенно удерживать пальму первенства.

Устройство элемента чрезвычайно простое. В основе – анод – цинковый порошок, пропитывающий активное вещество батарейки – марганцевый диоксид, цинковый катод со специальными добавками (для замедления коррозионного процесса в цинке) и непосредственно электролит, представленный хлоридом аммония. Именно благодаря последнему солевая батарейка получила свое название, ведь электролит, содержащийся в ней, по сути, соль.

Между электродами солевого элемента питания расположен сепаратор – прокладка, изолирующая реагент друг от друга и предотвращающая их смешивание между собой. Но при этом она пропускает через себя электролит. В результате чего между анодом, катодом и непосредственно амониевым хлоридом возникает реакция, приводящая к выделению электрического тока. Последний попадает на расположенные внутри элементы питания, а от них – на электроды, передающие конечный заряд электронному устройству, в котором находится солевая батарейка.

Достоинства

Невысокая стоимость (что обусловлено незначительными материалозатратами, простым процессом производства);

Простота и комфорт эксплуатации;

Практически универсальные параметры (характеристики батареек позволяют применять их в большинстве областей).

Недостатки

Ощутимое снижение емкости элемента питания при повышении разрядного тока до уровня, необходимого современным электронным устройствам;

Снижение качественных характеристик в условиях низких температур;

Незначительный срок хранения (не более 2 лет);

Существенное снижение напряжения в процессе разряда;

Окисление оболочки из-за недостаточной герметичности.

НА ЗАМЕТКУ. Солевые батарейки можно использовать практически на 100%. Казалось бы, в ситуации, когда заряда практически не осталось и элемент питания «выдохся», можно ненадолго продлить его жизнеспособность. Для этого необходимо вытащить его из электроприбора и немного постучать по корпусу. Так можно выровнять комки электролита: это позволит элементу питания проработать еще некоторое время.

Алкалиновые батарейки: особенности, устройство

Щелочные (алкалиновые) батарейки начали производить значительно позже солевых и первой компанией, представший продукт мировому рынку электроники, стала Duracell, которая и сегодня остается одним из лидеров в своей нише.

В основе алкалиновой (щелочной) батарейки, как и солевой, анод или восстановитель – порошкообразная масса, пропитанная электролитом, катод, представленный диоксидом марганца, и электролит. В роли последнего выступает калиевый гидроксид, то есть щелочь, откуда и появилось название элемента питания. Алкалиновыми же щелочные батарейки называются только потому, что щелочь в переводе с английского звучит как «alkaline».

Принцип действия алкалиновых батареек аналогичен солевым: анод и катод при воздействии на них электролита вырабатывают ток, передаваемый на расположенные внутри элемента питания токоотводы. При этом в целом эффективность работы продукта гораздо выше, нежели у рассмотренного выше аналога. Во-первых, благодаря цинковому восстановителю снижается вероятность перехода металла в неактивное состояние под воздействием большого тока разряда.

Во-вторых, цинковый электрод в виде порошка обеспечивает увеличенный процент используемого активного материала в сравнении с солевым аналогом. В-третьих, постоянный разряд повышенным током не так страшен алкалиновым элементам питания: благодаря щелочному электролиту обеспечивается значительная емкость изделия (в 7-10 раз выше, нежели в солевых аналогах).

Достоинства

Значительные показатели емкости;

Высокая работоспособность при средних нагрузках;

Сохранение качественных характеристик в условиях низких температур;

Значительный срок хранения – до 7 лет (в некоторых случаях – до 10).

Недостатки

Мгновенный выход из строя при разряде электролита.

НА ЗАМЕТКУ. Поскольку рассматриваемый продукт отличается далеко не дешевой ценой и большой мощностью, уместней всего использовать его в подходящих случаях. Алкалиновые батарейки незаменимы при необходимости использования среднего и высокого потребления тока, например, в фотокамерах, мощных фонарях, диктофонах и пр.

Сравнительный анализ

Итак, после тщательного изучения особенностей обоих продуктов не лишним будет упомянуть их идентичные черты:

Одинаковый размер (стандартный для всех батареек);

Возможность применения для одних и тех же устройств (при этом солевой элемент выйдет из строя быстрее);

Невозможность подзаряда (иначе это приводит к взрыву элемента);

Необходимость грамотной утилизации после окончания процесса эксплуатации (на сегодняшний день большинство стран уделяют этому вопросу значительное внимание, создавая специальные пункты приема, откуда батарейки поступают на заводы по утилизации изделий для их вторичного применения).

А теперь кратно об основных различиях. Наши эксперты провели сравнение и занесли результаты в таблицу.

Щелочной элемент питания — марганцево-цинковый гальванический элемент питания, в котором в качестве катода используется диоксид марганца, анода — порошкообразный цинк, а в качестве электролита — раствор щёлочи, обычно гидроксида калия.

Содержание

История изобретения [ править | править код ]

Впервые использовать щелочной электролит в химических источниках тока предложили независимо друг от друга Вальдемар Джангнер ( англ. ) в 1899 году и Томас Эдисон в 1901 году [1] [2] . Они использовали щелочной электролит в никель-кадмиевых аккумуляторах.

В марганцево-цинковых элементах питания щелочной электролит впервые применил канадский инженер Льюис Урри (англ.) русск. в середине 1950-х годов, работавший в Union Carbide ( англ. ) , выпускавшей элементы питания под маркой «Eveready». Льюис Урри использовал наработки Томаса Эдисона [3] . В 1960 году Урри вместе с Карлом Кордешем и Полом Маршалом получил патент на конструкцию щелочного элемента [4] .

Характеристики [ править | править код ]

Типичные характеристики щелочного элемента питания [5] [6] :

  • ЭДС элемента: 1,5 В;
  • Удельная энергия: 65—90 Вт∙ч/кг;
  • Удельная мощность: 100—150 кВт/м³;
  • Рабочая температура: -30. +55 °С.

Химические процессы [ править | править код ]

На аноде проходят реакции окисления цинка. Вначале образуется гидроксид цинка:

Zn + 2OH − → Zn(OH)2 + 2e −

Который затем разлагается на оксид цинка и воду.

На катоде, в свою очередь, происходят реакции восстановления оксида марганца (IV) в оксид марганца (III):

В целом, химические процессы внутри элемента при использовании KOH в качестве электролита можно описать следующим уравнением:

Zn + 2KOH + 2MnO2 + 2e − → 2e − + ZnO + 2KOH + Mn2O3

В отличие от солевого элемента, в щелочном электролит в процессе разрядки батареи практически не расходуется, а значит, достаточно малого его количества. Поэтому в щелочном элементе в среднем в 1,5 раза больше диоксида марганца.

Конструкция [ править | править код ]

По конструкции щелочной элемент похож на солевой, но основные части в нём расположены в обратном порядке. Анодная паста (3) в виде цинкового порошка, пропитанного загущённым щелочным электролитом, располагается во внутренней части элемента и имеет отрицательный потенциал, который снимается латунным стержнем (2). От активной массы, диоксида марганца, смешанного с графитом или сажей (5), анодная паста отделена сепаратором (4), также пропитанным электролитом. Положительный вывод, в отличие от солевого элемента, выполнен в виде стального никелированного стакана (1), а отрицательный — в виде стальной тарелки (9). Оболочка (6) изолирована от стакана и предотвращает короткое замыкание, которое может возникнуть при установке нескольких элементов в батарейный отсек. Прокладка (8) воспринимает давление газов, образующихся при работе. Выделение газов в щелочном элементе значительно меньше, чем в солевом, поэтому объём камеры для их сбора тоже меньше. Для предотвращения взрыва батареи при неправильном использовании (например, коротком замыкании), в ней имеется предохранительная мембрана (7). При превышении давления газов происходит разрыв мембраны и разгерметизация элемента — результатом обычно становится течь электролита.

Для увеличения срока хранения в ранних конструкциях элементов производилось амальгамирование цинкового порошка, однако такой способ продления срока хранения элементов делает элементы опасными для использования в быту. Поэтому в современные элементы вводят специальные органические ингибиторы коррозии.

Производство [ править | править код ]

Хранение и эксплуатация [ править | править код ]

Срок хранения щелочного элемента больше, чем у солевого, за счёт герметичной конструкции, также он не столь требователен к условиям хранения.

В отличие от солевых элементов щелочные могут работать при большем разрядном токе. Кроме того, отсутствует эффект «усталости» элемента, когда после работы на большой нагрузке происходит значительное падение напряжения на выводах элемента, и для восстановления его работоспособности требуется определённое время «отдыха». Однако при коротком замыкании или установке в неверной полярности также возможна течь электролита.

Области применения [ править | править код ]

Щелочной элемент имеет то же рабочее напряжение, что и обычный марганцево-цинковый при большей ёмкости, разрядном токе, сроке хранения и рабочем диапазоне температур. Щелочные элементы выпускаются в тех же типоразмерах, что и солевые, и потому могут применяться в тех же приборах, например, в фонарях, электронных игрушках, переносных магнитофонах и т.д. Однако за счёт лучших разрядных характеристик возможно применение их как в устройствах, потребляющих значительный ток (фотовспышки, радиоуправляемые модели), так и в устройствах, потребляющих относительно небольшой ток в течение длительного времени (электронные часы).

Сравнение солевых и щелочных элементов [ править | править код ]

Благодаря такой конструкции, у щелочного элемента есть следующие особенности:

  • Отсутствие расхода электролита, а значит меньшее его количество, необходимое для работы
  • Анодом является порошкообразный цинк, а не цинковый стакан, поэтому реакция идёт на значительно большей поверхности.
  • Меньше газовыделение, благодаря чему элемент можно делать полностью герметичным.

Отсюда можно выделить следующие преимущества и недостатки:

Алкалиновые батарейки (щелочные батарейки) берут свое начало с середины 20-го века.

В те далекие времена компания из США – Duracell – оказалась одной из первых, кто поставил производство новых источников тока на промышленный поток.

В алкалиновых батарейках в качестве рабочих составляющих используется:

  • диоксид марганца (окислитель);
  • порошковый цинк (восстановитель).

Что дает возможность снизить вероятность пассивации поверхности восстановителя при высоких разрядных токах за счет развития поверхности.

Теперь функции и задачи ртути выполняют чистые цинковые порошки, легированные особыми металлами, или ингибиторы коррозии на основе органики.

Составляющие алкалиновых батареек

Активным компонентом Alkaline (щелочной) батарейки выступает чистый цинк в виде порошка.

Чтобы замедлить процессы коррозии, цинк высокой степени чистоты легируется свинцовыми, висмутовыми, алюминиевыми, индиевыми добавками.

Порошковые частицы цинка имеют диаметр от 155 до 255 микрометра, и удельную поверхность в границах 0,02 м2/г.

Активной массой анода в алкалиновой батарейке является группа компонентов:

  • цинковый порошок (от 55 до 75% общей массы);
  • ингибитор коррозии (до 0,05% общей массы);
  • раствор КОН от 32 до 55% (от 25 до 45% общей массы);
  • загуститель (от 0,4 до 2% общей массы);
  • оксид цинка (до 2% общей массы).

Целлюлоза, полакрилат, поливиниловый спирт, а также прочие полимеры, могут применяться как гель-компонент при производстве алкалиновых батареек.

КАТОД

Активной массой катода в алкалиновой (щелочной) батарейке является группа компонентов:

  • диоксид марганца (от 79 до 85% общей массы);
  • раствор КОН от 35 до 55% (от 7 до 10% общей массы);
  • углерод (от 7 до 10% общей массы);
  • связующий элемент (от 0 до 1% общей массы).

При этом процентное соотношение может варьироваться у алкалиновых батареек от разных производителей в широких пределах.

ЭЛЕКТРОЛИТ

Электролит загущается природным или производным полимерным соединением на основе OH-группы.

Чаще всего электролит, который содержат алкалиновые батарейки, — это:

  • концентрированный раствор КОН;
  • концентрированный раствор NaOH;
  • добавки ZnO;
  • добавки LiOH.

Как работают алкалиновые батарейки

Процессы разряда сопровождаются окислениями цинка, созданием цинката.

Как только электролит насыщается цинкатом, начинается следующая стадия, в которой идет балансирование между поглощением и выделением ионов OH.

При этом наблюдается разложение гидроксида цинка на воду и оксид цинка, но щелочь не расходуется.

За счет порошкового цинкового электрода алкалиновые батарейки значительно выигрывают у солевых в коэффициентном использовании активных компонентов.

Сравнивая беспрерывную работу солевых и щелочных (alkaline) батареек на средних и высоких разрядных токах, последние показывают лучшую емкость (до 10 раз) при одинаковых рабочих габаритах.

Кроме того, алкалиновые батарейки:

  • менее требовательны к температурам окружающей среды;
  • способны работать даже в минус 20 градусов Цельсия;
  • показывают годовой 10-и процентный саморазряд при плюс 20 градусах Цельсия;
  • трехмесячный 10-и процентный саморазряд при плюс 50 градусах.

Тем не менее, гарантийным периодом (при средних температурах) считаются 5 и даже 7 лет.

Ссылка на основную публикацию
Что означает ошибка 110
Ошибка 110 в Android происходит главным образом при обновлении или установке приложений из Google Play. Случается это из-за несовместимости ОС:...
Что выбрать windows 7 или windows 10
Сегодня в нашем блоге «Чо?! Чо?!» я раскрою все преимущества и недостатки новой операционной системы для ноутбуков, сравнив ее с...
Что в китае дешевле чем в россии
Я экономлю тысячи рублей, покупая товары из Китая через интернет Сегодня я расскажу Вам о том, что выгодно покупать в...
Что означает ошибка 963
Ошибки в Google Play дело достаточно частое, это не удивительно, ведь Плей маркет – это один из крупнейших магазинов приложений....