Что делать когда дискриминант равен 0

Что делать когда дискриминант равен 0

Знание — сила. Познавательная информация

Дискриминант 0

Эта подсказка поможет легко запомнить формулу корней квадратного уравнения (точнее, корня, ведь в этом случае он один), если дискриминант равен 0.

Учить эту формулу не нужно!

Итак, в процессе решения квадратного уравнения

находим дискриминант квадратного уравнения по формуле:

Если дискриминант больше нуля (D>0), то квадратное уравнение имеет два корня:

Достаточно запомнить только одну эту формулу, и использовать ее же, если дискриминант равен 0. Ведь квадратный корень из нуля равен нулю, а от прибавления или вычитания нуля число не изменится:

Таким образом, если дискриминант равен 0 (D=0), корень квадратного уравнения равен

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

— это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда — это просто число D = b 2 − 4 ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D D = 0, есть ровно один корень;
  2. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8 x + 12 = 0;
  2. 5 x 2 + 3 x + 7 = 0;
  3. x 2 − 6 x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D x 2 − 2 x − 3 = 0;

  • 15 − 2 x − x 2 = 0;
  • x 2 + 12 x + 36 = 0.
  • Первое уравнение:
    x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2) 2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Второе уравнение:
    15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2) 2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    Наконец, третье уравнение:
    x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 12 2 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax 2 + bx + c = 0 называется , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (− c / a ) c / a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    Задача. Решить квадратные уравнения:

    x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

    5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

    Если дискриминант равен ноль, то уравнение имеет два одинаковых корня, котрые находятся так же как и при положительном дискриминанте. Но можно левую часть уравнения разложить на множители. Х^2 + 4х+ 4=0; (Х +2)(Х +2)=0 Х +2=0 и Х +2=0 , значит оба корня х=-2.

    Пусть дано квадратное уравнение вида ax^2+bx+c=0, при чём a не равно 0. Если дискриминант данного уравнения равен нулю, то уравнение имеет один корень, который равен: x=-b/2a.

    Просто, по формуле корней. Квадратный корень нуля равен нулю. Вот и подставляете в формулу нуль вместо дискриминанта. Если дискриминант равен нулю, то у квадратного уравнения есть один корень, или говоря по другому, два корня равны между собой.

    Ссылка на основную публикацию
    Что выбрать windows 7 или windows 10
    Сегодня в нашем блоге «Чо?! Чо?!» я раскрою все преимущества и недостатки новой операционной системы для ноутбуков, сравнив ее с...
    Хороший набор инструментов для автомобиля отзывы
    Счастливым обладателям автомобилей необходимо иметь при себе инструменты, помогающие в чрезвычайной ситуации с машиной. Ежегодно выпускается большое количество разнообразных инструментов,...
    Хонор похожий на айфон
    Apple активно продвигает iPhone XS, но есть ли достойная альтернатива дорогому и в чём-то «сырому» устройству? Honor наносит ответный удар...
    Что в китае дешевле чем в россии
    Я экономлю тысячи рублей, покупая товары из Китая через интернет Сегодня я расскажу Вам о том, что выгодно покупать в...