Число в минус бесконечной степени

Число в минус бесконечной степени

Если при нахождении предела получаем число в степени бесконечность, то для отличных от нуля и единицы значений такое выражение не является неопределенностью и вычисляется непосредственно. Поскольку показательная функция

при а>1 возрастает, то для таких а

При 0

Соответственно, применение второго замечательного предела здесь не требуется. Используем следующее свойство пределов:

при условии, что эти пределы существуют.

Рассмотрим примеры, в которых нужно найти число в степени бесконечность.

Найти пределы функций:

Получили неопределенность бесконечность на бесконечность в степени бесконечность.

Найдем пределы основания и показателя степени. (Как находить предел бесконечность на бесконечность, уже рассматривали ранее. Делим и числитель, и знаменатель на старшую степень икса, в данном случае — на x.)

Таким образом, приходим к выводу, что

2) Вычислить предел функции:

Рассуждаем аналогично. При нахождении предела основания степени делим многочлены в числителе и знаменателе на старшую степень икса, то есть на x²:

Правило Лопиталя и раскрытие неопределённостей

Производная от функции недалеко падает, а в случае правил Лопиталя она падает точно туда же, куда падает исходная функция. Это обстоятельство помогает в раскрытии неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей, возникающих при вычислении предела отношения двух бесконечно малых или бесконечно больших функций. Вычисление значительно упрощается с помощью этого правила (на самом деле двух правил и замечаний к ним):

.

Как показывает формула выше, при вычислении предела отношений двух бесконечно малых или бесконечно больших функций предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Перейдём к более точным формулировкам правил Лопиталя.

Правило Лопиталя для случая предела двух бесконечно малых величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a. А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g(x) не равна нулю ( g‘(x)≠0 ) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны нулю:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

.

Правило Лопиталя для случая предела двух бесконечно больших величин. Пусть функции f(x) и g(x) имеют производные (то есть дифференцируемы) в некоторой окрестности точки a. А в самой точке a они могут и не иметь производных. При этом в окрестности точки a производная функции g(x) не равна нулю ( g‘(x)≠0 ) и пределы этих функций при стремлении икса к значению функции в точке a равны между собой и равны бесконечности:

.

Тогда предел отношения этих функций равен пределу отношения их производных:

.

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный, то есть равный определённому числу, или бесконечный, то есть равный бесконечности).

Замечания.

1. Правила Лопиталя применимы и тогда, когда функции f(x) и g(x) не определены при x = a.

2. Если при вычисления предела отношения производных функций f(x) и g(x) снова приходим к неопределённости вида 0/0 или ∞/∞, то правила Лопиталя следует применять многократно (минимум дважды).

3. Правила Лопиталя применимы и тогда, когда аргумент функций (икс) стремится не к конечному числу a, а к бесконечности (x → ∞).

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

Решение. Подстановка в заданную функцию значения x=2 приводит к неопределённости вида 0/0. Поэтому производную каждой функции и получаем

В числителе вычисляли производную многочлена, а в знаменателе — производную сложной логарифмической функции. Перед последним знаком равенства вычисляли обычный предел, подставляя вместо икса двойку.

Пример 2. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 3. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Решение. Подстановка в заданную функцию значения x=0 приводит к неопределённости вида 0/0. Поэтому вычисляем производные функций в числителе и знаменателе и получаем:

Пример 4. Вычислить

.

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Переходим к примерам, в которых правило Лопиталя приходится применять дважды, то есть приходить к пределу отношений вторых производных, так как предел отношения первых производных представляет собой неопределённость вида 0/0 или ∞/∞.

Пример 5. Вычислить предел отношения двух функций, пользуясь правилом Лопиталя:

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида 0/0.

Пример 7. Вычислить

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида — ∞/∞, а затем неопределённость вида 0/0.

Пример 8. Вычислить

.

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных сначала дают неопределённость вида ∞/∞, а затем неопределённость вида 0/0.

Применить правило Лопиталя самостоятельно, а затем посмотреть решение

Пример 9. Вычислить

.

Подсказка. Здесь придётся попыхтеть несколько больше обычного над преобразованием выражений под знаком предела.

Пример 10. Вычислить

.

Подсказка. Здесь правило Лопиталя придётся применять трижды.

Раскрытие неопределённостей вида "ноль умножить на бесконечность"

Пример 11. Вычислить

.

(здесь неопределённость вида 0∙∞ мы преобразовали к виду ∞/∞, так как

а затем применили правила Лопиталя).

Пример 12. Вычислить

.

В этом примере использовано тригонометрическое тождество .

Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"

Неопределённости вида , или обычно приводятся к виду 0/0 или ∞/∞ с помощью логарифмирования функции вида

Чтобы вычислить предел выражения , следует использовать логарифмическое тождество , частным случаем которого является и свойство логарифма .

Используя логарифмическое тождество и свойство непрерывности функции (для перехода за знак предела), предел следует вычислять следующим образом:

Отдельно следует находить предел выражения в показателе степени и возводить e в найденную степень.

Пример 13. Вычислить, пользуясь правилом Лопиталя

.

Вычисляем предел выражения в показателе степени

.

.

Пример 14. Вычислить, пользуясь правилом Лопиталя

.

Вычисляем предел выражения в показателе степени

.

.

Пример 15. Вычислить, пользуясь правилом Лопиталя

.

Вычисляем предел выражения в показателе степени

.

Раскрытие неопределённостей вида "бесконечность минус бесконечность"

Это случаи, когда вычисление предела разности функций приводит к неопределённости "бесконечность минус бесконечность": .

Вычисление такого предела по правилу Лопиталя в общем виде выглядит следующим образом:

В результате таких преобразований часто получаются сложные выражения, поэтому целесообразно использовать такие преобразования разности функций, как приведение к общему знаменателю, умножение и деление на одно и то же число, использование тригонометрических тождеств и т.д.

Пример 16. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Пример 17. Вычислить, пользуясь правилом Лопиталя

.

Решение. Пользуясь вышеперечисленными рекомендациями, получаем

Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:

(Здесь 0 <displaystyle 0> — бесконечно малая величина, а ∞ <displaystyle infty > — бесконечно большая величина)

по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.

Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только ко второму и третьему из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.

Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки. Для раскрытия неопределённостей видов ( 0 0 ) <displaystyle left(

0^<0>
ight)> , ( 1 ∞ ) <displaystyle left(1^<infty >
ight)> , ( ∞ 0 ) <displaystyle left(infty ^<0>
ight)> пользуются следующим приёмом: находят предел (натурального) логарифма выражения, содержащего данную неопределённость. В результате вид неопределённости меняется. После нахождения предела от него берут экспоненту.

0^<0>
ight)=left(e^<0cdot ln <0>>
ight)=left(e^<0cdot (-infty )>
ight)> ( 1 ∞ ) = ( e ∞ ⋅ ln ⁡ 1 ) = ( e ∞ ⋅ 0 ) <displaystyle left(

1^<infty >
ight)=left(e^<infty cdot ln <1>>
ight)=left(e^<infty cdot 0>
ight)> ( ∞ 0 ) = ( e 0 ⋅ ln ⁡ ∞ ) = ( e 0 ⋅ ∞ ) <displaystyle left(

infty ^<0>
ight)=left(e^<0cdot ln <infty >>
ight)=left(e^<0cdot infty >
ight)>

Для раскрытия неопределённостей типа ∞ ∞ <displaystyle <frac <infty ><infty >>> используется следующий алгоритм:

  1. Выявление старшей степени переменной;
  2. Деление на эту переменную как числителя, так и знаменателя.

Для раскрытия неопределённостей типа ( 0 0 ) <displaystyle left(<frac <0><0>>
ight)> существует следующий алгоритм:

  1. Разложение на множители числителя и знаменателя;
  2. Сокращение дроби.

Для раскрытия неопределённостей типа ( ∞ − ∞ ) <displaystyle (infty -infty )> иногда удобно применить следующее преобразование:

Пусть f ( x ) → x → a ∞ <displaystyle f(x)<xrightarrow >infty > и g ( x ) → x → a ∞ <displaystyle g(x)<xrightarrow >infty > ; lim x → a [ f ( x ) − g ( x ) ] = ( ∞ − ∞ ) = lim x → a ( 1 1 f ( x ) − 1 1 g ( x ) ) = lim x → a 1 g ( x ) − 1 f ( x ) 1 g ( x ) ⋅ 1 f ( x ) = ( 0 0 ) <displaystyle lim _[f(x)-g(x)]=(infty -infty )=lim _left(<frac <1><frac <1>>>-<frac <1><frac <1>>>
ight)=lim _<frac <<frac <1>>-<frac <1>>><<frac <1>>cdot <frac <1>>>>=left(<frac <0><0>>
ight)> .

Данный вид неопределённостей может раскрываться с использованием асимптотических разложений уменьшаемого и вычитаемого, при этом бесконечно большие члены одного порядка должны уничтожаться.

При раскрытии неопределённостей также применяются замечательные пределы и их следствия.

Пример [ править | править код ]

0>"> lim x → a a x − x a x − a , a > 0 <displaystyle lim _<frac -x^>>,a>0> 0>"/> — пример [1] неопределённости вида ( 0 0 ) <displaystyle left(<frac <0><0>>
ight)> . По правилу Лопиталя lim x → a a x − x a x − a = lim x → a a x ln ⁡ a − a x a − 1 1 = a a ( ln ⁡ a − 1 ) <displaystyle lim _<frac
-x^>>=lim _<frac ln a-ax^><1>>=a^(ln a-1)> . Второй способ — прибавить и отнять в числителе a a <displaystyle a^> и дважды применить теорему Лагранжа, к функциям a x <displaystyle a^> и x a <displaystyle x^> соответственно:

a x − x a x − a = a x − a a − ( x a − a a ) x − a = a c ln ⁡ a ( x − a ) − a d a − 1 ( x − a ) x − a = a c ln ⁡ a − a d a − 1 <displaystyle <frac -x^>>=<frac -a^-(x^-a^)>>=<frac ln a(x-a)-ad^(x-a)>>=a^ln a-ad^>

здесь c, d лежат между a и x, поэтому они стремятся к a при x стремящемся к a, отсюда получаем тот же предел, что и в первом способе.

Ссылка на основную публикацию
Хороший набор инструментов для автомобиля отзывы
Счастливым обладателям автомобилей необходимо иметь при себе инструменты, помогающие в чрезвычайной ситуации с машиной. Ежегодно выпускается большое количество разнообразных инструментов,...
Фейковая карта visa с деньгами
Getting a valid Visa credit card number Visa credit card number (Bulk Generate Visa Cards) To check if your credit...
Фейсбук страница владимира панаева
с 16 по 26 Декабря Поволжское отделение Российской академии художеств Лаврушинский пер., д. 15Москва 15 декабря в 18.00 в Координационном...
Хонор похожий на айфон
Apple активно продвигает iPhone XS, но есть ли достойная альтернатива дорогому и в чём-то «сырому» устройству? Honor наносит ответный удар...