Чему равна сторона квадрата вписанного в окружность

Чему равна сторона квадрата вписанного в окружность

Свойства

Квадрат является правильным четырехугольников, у которого все стороны и величины всех углов равны. Это значительно упрощает вычисления, входящие в состав задачи. Диагонали, проведенные в квадрате, также равны друг другу и пересекаются под тем же углом, что и со сторонами: m(

Диагональ квадрата делит его на два конгруэнтных прямоугольных треугольника, в которых по теореме Пифагора можно вычислить сторону или диагональ квадрата. a^2+a^2=d^2 2a^2=d^2 d=√2 a

Периметр квадрата является суммой всех его сторон, а так как они одинаковы, то его можно представить в виде произведения стороны квадрата на 4. P=4a

Площадь квадрата вычисляется возведением его стороны во вторую степень. S=a^2

Радиус вписанной в квадрат окружности исходит из центра квадрата, который по совместительству является точкой пересечения диагоналей, и опускается под прямым углом на сторону. Из рисунка видно, что радиус вписанной окружности параллелен другой стороне квадрата и составляет ровно половину от ее длины. Таким образом, радиус вписанной окружности будет равен стороне квадрата, деленной на два. (рис. 69.2) r=a/2

Радиус описанной окружности исходит из центра квадрата – точки пересечения диагоналей, и опускается в угол квадрата, тем самым составляя половину диагонали квадрата. Преобразуя эту формулу для стороны получим следующее выражение. (рис. 69.3) R=d/2=(√2 a)/2=a/√2

Окружность вписанная в квадрат

Чтобы формула нахождения радиуса вписанной окружности в квадрат r была правильно рассчитана, необходимо изначально вспомнить какими свойствами обладает данная фигура. У квадрата:

  • все углы прямые, то есть, равны 90°;
  • все стороны, как и углы, равны;
  • диагонали равны, точкой пересечения бьются строго пополам и пересекаются под углом 90°.

При этом вписанная в выпуклый многоугольник окружность обязательно касается всех его сторон. Обозначим квадрат ABCD, точку пресечения его диагоналей O. Как видно на рисунке 1, пересечение линий АС и ВD дают равнобедренный треугольник АОВ, в котором стороны АО=ОВ, углы ОАВ=АВО=45°, а угол АОВ=90°. Тогда радиусом вписанной окружности в квадрат будет не что иное, как высота ОЕ полученного равнобедренного треугольника АОВ.

Если предположить, что сторона квадрата равна у, то формула нахождения радиуса вписанной окружности в квадрат будет выглядеть следующим образом:

Объяснение: в равнобедренном треугольнике АОВ высота ОЕ или радиус r делят основание АВ пополам (свойства), образовывая при этом прямоугольный треугольник с прямым угол ОЕВ. В маленьком треугольнике ЕВО основание ОВ образует со сторонами ОЕ и ЕВ углы по 45°. Значит треугольник ЕВО еще и равнобедренный. Стороны ОЕ и ЕВ равны.

Окружность описанная около квадрата

Вокруг квадрата также можно описать окружность. В этом случае каждая вершина фигуры будет касаться окружности. Следующая формула нахождения радиуса описанной окружности около квадрата будет находиться еще проще. В этом случае R описанной окружности будет равен половине диагонали квадрата. В буквенном виде формула выглядит так (рисунок 2):

Объяснение: после проведения диагоналей ABCD образовались два одинаковых прямоугольных треугольника АВС = CDA. Рассмотрим один из них. В треугольнике CAD:

  • угол CDA=90°;
  • стороны AD=CD. Признак равнобедренного треугольника;
  • угол DAC равен ACD. Они равны по 45°.

Чтобы найти в этом прямоугольном треугольнике гипотенузу АС, необходимо воспользоваться теоремой Пифагора:
, отсюда
Поскольку окружность касается вершин квадрата, а точка пересечения его диагоналей является центром описанной окружности (свойства), то отрезок ОС и будет радиусом окружности. Он является половинкой гипотенузы. Это утверждение вытекает из свойств равнобедренного треугольника или свойств диагоналей квадрата. Потому формула нахождения радиуса описанной окружности около квадрата в нашем случае имеет следующий вид:

Поскольку AD=CD, а свойства квадратного корня позволяют вынести одно из подкоренных выражений, тогда формула приобретает вид:

Нахождения величины радиуса описанной окружности около квадрата при известной величине радиуса вписанной окружности.

  • треугольник ОСЕ – равнобедренный и прямоугольный;
  • ОЕ=ЕС=;
  • ОЕС=90°;
  • ЕОС=ОСЕ=45°;

Найти: ОС=?
Решение: в данном случае задачу можно решить, воспользовавшись либо теоремой Пифагора, либо формулой для R. Второй случай будет проще, поскольку формула для R выведена из теоремы.

Квадрат – ромб, у которого все углы прямые.

Квадрат – прямоугольник с равными сторонами.

Квадрат – параллелограмм, у которого все стороны равны и все углы равны.

Свойства квадрата

Все свойства параллелограмма, ромба, прямоугольника верны для квадрата.

Признаки квадрата

Четырехугольник будет являться квадратом, если выполняется хотя бы одно из условий:

1. Все стороны равны и среди внутренних углов есть прямой угол.

2. Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.

3. Четырехугольник обладает поворотной симметрией: он не изменится при повороте на 90˚.

Описанная окружность

Около квадрата можно описать окружность. Сторона и радиус окружности связаны соотношением:

Вписанная окружность

В квадрат можно вписать окружность. Радиус вписанной окружности и сторона квадрата связаны соотношением:

Площадь квадрата

Смотрите также таблицу-шпаргалку «Площади простейших фигур» здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Ссылка на основную публикацию
Хороший набор инструментов для автомобиля отзывы
Счастливым обладателям автомобилей необходимо иметь при себе инструменты, помогающие в чрезвычайной ситуации с машиной. Ежегодно выпускается большое количество разнообразных инструментов,...
Фейковая карта visa с деньгами
Getting a valid Visa credit card number Visa credit card number (Bulk Generate Visa Cards) To check if your credit...
Фейсбук страница владимира панаева
с 16 по 26 Декабря Поволжское отделение Российской академии художеств Лаврушинский пер., д. 15Москва 15 декабря в 18.00 в Координационном...
Хонор похожий на айфон
Apple активно продвигает iPhone XS, но есть ли достойная альтернатива дорогому и в чём-то «сырому» устройству? Honor наносит ответный удар...