Чем дифференциал отличается от производной

Чем дифференциал отличается от производной

Чтобы лучше понять разницу между дифференциалом и производной функции, вам нужно сначала понять концепцию функции.

Функция является одной из основных концепций математики, которая определяет взаимосвязь между набором входов и множеством возможных выходов, где каждый вход связан с одним выходом. Одной переменной является независимая переменная, а другая переменная — зависимая переменная.

Концепция функции является одной из самых недооцененных тем в математике, но имеет важное значение для определения физических отношений. Возьмем, к примеру: утверждение «y является функцией x» означает, что что-то, связанное с y, напрямую связано с x по какой-либо формуле. Скажем, если входной сигнал равен 6, а функция — добавить 5 к входу 6. Результат будет 6 + 5 = 11, что является вашим выходом.

В математике есть несколько исключений, или вы можете сказать о проблемах, которые не могут быть решены обычными методами геометрии и алгебры. Для решения этих проблем используется новая ветвь математики, известная как исчисление.

Исчисление принципиально отличается от математики, которая не только использует идеи из геометрии, арифметики и алгебры, но также имеет дело с изменением и движением.

Исчисление как инструмент определяет производную функции как предел определенного вида. Понятие производной функции отличает исчисление от других отраслей математики. Дифференциал — это подполе исчисления, которое относится к бесконечно малой разности в некоторой переменной величине и является одним из двух фундаментальных делений исчисления. Другая ветвь называется интегральным исчислением.

Что такое Дифференциал?

Дифференциал — одно из фундаментальных делений исчисления, а также интегральное исчисление. Это подполе исчисления, которое имеет дело с бесконечно малым изменением в некоторой переменной величине. Мир, в котором мы живем, наполнен взаимосвязанными количествами, которые меняются периодически.

Например, площадь кругового тела, которая изменяется при изменении радиуса или снаряд, который изменяется со скоростью. Эти изменяющиеся сущности в математических терминах называются переменными, а скорость изменения одной переменной по отношению к другой является производной. И уравнение, представляющее связь между этими переменными, называется дифференциальным уравнением.

Дифференциальные уравнения — это уравнения, содержащие неизвестные функции и некоторые их производные.

Что такое производная?

Понятие производной функции является одним из самых мощных понятий в математике. Производной функции обычно является новая функция, которая называется производной функцией или функцией скорости.

Производная функции представляет собой мгновенную скорость изменения значения зависимой переменной по отношению к изменению значения независимой переменной. Это фундаментальный инструмент исчисления, который также можно интерпретировать как наклон касательной линии. Он измеряет, насколько крутой график функции находится в некоторой заданной точке графика.

Читайте также:  Что делать если сильно скачет пинг

Проще говоря, производная — это скорость, с которой функция изменяется в какой-то определенной точке.

Разница между дифференциальными и производными

Определение дифференциального Vs. производный

Оба термина дифференциальные и производные тесно связаны друг с другом с точки зрения взаимосвязи. В математике меняющиеся сущности называются переменными, а скорость изменения одной переменной по отношению к другой называется производной.

Уравнения, определяющие связь между этими переменными и их производными, называются дифференциальными уравнениями. Дифференциация — это процесс нахождения производной. Производной функции является скорость изменения выходного значения по отношению к его входному значению, тогда как дифференциал — это фактическое изменение функции.

Связь дифференциальных Vs. производный

Дифференциация — это метод вычисления производной, которая является скоростью изменения выхода y функции относительно изменения переменной x.

Проще говоря, производная относится к скорости изменения y по х, и это соотношение выражается как y = f (x), что означает, что y является функцией x. Производные функции f (x) определяются как функция, значение которой порождает наклон f (x), где она определена, и f (x) дифференцируема. Это относится к наклону графика в данной точке.

Представление дифференциального Vs. производный

Дифференциалы представлены как dИкс, dу, dt и т. д., где dx представляет собой небольшое изменение x, dy представляет собой небольшое изменение y и dt — небольшое изменение t. При сравнении изменений связанных величин, где y — функция x, дифференциал dy может быть записана как:

Производной функции является наклон функции в любой точке и записывается как d/dИкс. Например, производную от sin (x) можно записать в виде:

d/dx sin (x) = sin (x) ’ = cos (x)

Дифференциальная и производная: Сравнительная таблица

Резюме дифференциальных Vs. производный

В математике скорость изменения одной переменной по отношению к другой переменной называется производной, а уравнения, выражающие связь между этими переменными и их производными, называются дифференциальными уравнениями.В двух словах, дифференциальные уравнения включают производные, которые фактически определяют, как изменяется количество относительно другого. Решая дифференциальное уравнение, вы получаете формулу для количества, не содержащего производных. Метод вычисления производной называется дифференцированием. Проще говоря, производной функции является скорость изменения выходного значения по отношению к его входному значению, тогда как дифференциал — это фактическое изменение функции.

§ 1. Производная функции одной независимой переменной

Для вычисления производной выведены правила нахождения производной и таблицы производных элементарных функций.

Опр. 3. Функция, имеющая производную в точкех, называетсядифференцируемой в этой точке.

Опр. 4. Если функция имеет производную в каждой точке интервала, то она называетсядифференцируемой в интервале.

Читайте также:  Как в экселе закрепить несколько областей

Геометрический смысл производной заключается в том, что производная функции f(x) в точке x равна тангенсу угла наклона касательной к графику функции в этой точке.

Физический смысл. Производная — это скорость изменения функции в точке x. Из определения производной следует, что f’(x)Δf/Δx, причем точность этого приближенного равенства тем выше, чем меньше Δx. Производная f’(x) является приближенным коэффициентом пропорциональности между Δf и Δx.

§ 2. Правила дифференцирования функций

Теорема. Если функция имеет производную в точке, то она непрерывна в этой точке.

Формула для нахождения производной от сложной функциитакова:

Дифференцирование обратной функции. Если у=f(x) и х=g(y) – взаимно-обратные дифференцируемые функции и у’х≠0, то т. е. производная обратной функции равна обратной величине производной данной функции.

Теорема (правило Лопиталя). Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле. Итак, если имеется неопределенность вида или, то

§ 3. Дифференциал. Геометрический смысл дифференциала

Пусть функция y=f(x) дифференцируема на отрезке [a; b]. Производная этой функции в некоторой точке х Î [a; b] определяется равенством

.

Следовательно, по свойству предела

Умножая все члены полученного равенства на Δx, получим:

Итак, бесконечно малое приращение Δy дифференцируемой функции y=f(x) может быть представлено в виде суммы двух слагаемых, из которых первое есть (при f ‘(х) ≠ 0)главная часть приращения, линейная относительно Δx, а второе – бесконечно малая величина более высокого порядка, чем Δx. Главную часть приращения функции, т.е. f ‘(х)·Δx называют дифференциалом функции в точке х и обозначают через dy.

Таким образом, если функция y=f(x) имеет производную f ‘(x) в точке x, то произведение производной f ‘(x) на приращение Δx аргумента называют дифференциалом функции и обозначают:

Найдем дифференциал функции y= x. В этом случае y‘ = (x)’ = 1 и, следовательно, dy=dxx. Таким образом, дифференциал dxнезависимой переменной xсовпадает с ее приращением Δx. Поэтому формулу (1) мы можем записать так:

Но из этого соотношения следует, что . Следовательно, производнуюf ‘(x) можно рассматривать как отношение дифференциала функции к дифференциалу независимой переменной.

Ранее мы показали, что из дифференцируемости функции в точке следует существование дифференциала в этой точке.

Справедливо и обратное утверждение.

Если для данного значения x приращение функции Δy = f(xx) – f(x) можно представить в виде Δy = A·Δx + α, где α – бесконечно малая величина, удовлетворяющая условию , т.е. если для функцииy=f(x) существует дифференциал dy=A·dx в некоторой точке x, то эта функция имеет производную в точке x и f ‘(x)=А.

Читайте также:  Комментарий под фотку лучшей подруге

Действительно, имеем , и так какпри Δx→0, то .

Таким образом, между дифференцируемостью функции и существованием дифференциала имеется очень тесная связь, оба понятия равносильны.

Рассмотрим функциюy=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox. Дадим независимой переменной x приращение Δx, тогда функция получит приращение Δy = NM1. Значениям xx и yy на кривой y = f(x) будет соответствовать точка

Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.

Дифференциальное исчисление – это раздел математики, который исследует свойства функций, которые заданы на интервалах (сплошных множествах), с помощью определения предела функций.

Свойство непрерывности свидетельствует о том, что точке х при малом отклонении аргумента Δx от х функция отклоняется мало. В связи с этим, непрерывную функцию в окрестности точки х, приближенно можно заменить константой, значением в х. В таком случае, при Δx?0 к нулю стремится абсолютная ошибка приближения. Однако данная аппроксимация не отражает изменения функции при переходе переменной х в точке 0 – убывая или возрастая, медленно или быстро. Для того, чтобы это выяснить и введены производная и дифференциал, которые и дают более точную аппроксимацию функции в окрестности х линейной функцией, а не константой. Производная и дифференциал отражает величину и тенденцию изменения в точке х функции.

Производная и дифференциал на наглядном примере выглядит так. Возьмем функцию y = f ( x), которая имеет действительные значения и задана на оси R. Внутреннюю точку x ε I фиксируем и берем еще любую точку xεI . Приращением независимой переменной в точке х является разность Δx = x — x. Предел разностного отношения, при котором х стремится к х0 называется производной функции f (x) в точке х.

Функция, для которой возможно разложение, называется дифференцируемой в точке х. Дифференциалом функции f в точке х называется слагаемое f’ (х)(х-х). Таким образом, наличие в точке производной эквивалентно и дифференцируемости в этой же точке.

Дифференциал также имеет и специальное обозначение:

Создано дифференциальное исчисление одновременно, а также независимо друг от друга Готфиридом Вильгельмом Лейбницем и Исааком Ньютоном.

Ссылка на основную публикацию
Хороший принтер для школьника
Для ученика возможность распечатывать доклады, рефераты и иллюстрации для занятий в школе - совсем не лишняя. Школьнику в XXI веке...
Файл с расширением dav чем открыть
Файл формата DAV открывается специальными программами. Чтобы открыть данный формат, скачайте одну из предложенных программ. Чем открыть файл в формате...
Файл подкачки windows 7 на флешку
В прошлой статье рассказано, как определиться с оптимальным размером файла подкачки, что делать с SSD-дисками и как установить размер файла...
Хороший телефон с aliexpress
Обновлено 22.10.2019 На Алиэкспресс есть много разных производителей смартфонов. Даже есть такие международные бренды, как Apple. В этой подборке мы...
Adblock detector