Центр масс точек по координатам

Центр масс точек по координатам

Для создания поделок, головоломок да и просто в домашних делах, иногда возникает ситуация когда необходимо рассчитать центр тяжести какой либо фигуры. И если для простейших фигур, формулы расчета центра тяжести известны, например для круга центр тяжести совпадает с центром окружности, то более сложные фигуры, а тем более фигуры состоящие из ломаных линий, вручную посчитать очень сложно.

Что же такое центр тяжести? Это такая точка на фигуре, поднимая за которую, фигура остается в таком же положении как она лежала например на столе. Это дилетанское конечно же объяснение, кроме этого мы говорим о плоских фигурах. Более правильное такое: Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю .

Калькулятор рассчитвает центр тяжести любой плоской однородной по составу фигуры, состоящей из ломаных линий.

Что же Вам, как пользователю необходимо знать? Необходимы координаты точек вершин такого многоугольника.

Как определить центр тяжести?

Если на точки М1(x1,y1,z1) и М2(x2,y2,z2) действуют паралельные силы то точка М приложения равнодействующей этих сил делит отрезок М1М2 обратно пропорционально этим силам

Поэтому координаты точки М будут

если речь идет о воздействии трех действующих сил то формулы аналогичные и высчитываются как арифметическое средневзвешенное

таким же способом рассчитываются если в точках приложения сил не три, а четыре или пять или десять например.

Если принять что силой действующий на точки будет сила тяжести, а масса точек будет одинакова, то после сокращений одинаковых значений, наша формула для трех точек будет следующей

Здесь положение центра тяжести зависит только от положения точек. Точка () называется геометрическим центром тяжести этих точек

Если фигура симметрична — то центр тяжести совпадает с геометрическим центром фигуры. Это касается таких например фигур как квадрат, круг, правильный многоугольник, равносторонний треугольник и другие подобные объекты.

И еще, немного теории, которая поможет рассчитать центр тяжести сложных фигур.

Положение центра тяжести чистемы точечных масс не изменится, если любую частичную группу точечных масс системы заменить одной точечной массой, расположенной в центре тяжести этой группы и имеющей в качестве массы сумму масс точек этой группы.

РАСЧЕТ ЦЕНТРА ТЯЖЕСТИ ТРЕУГОЛЬНИКА ПО КООРДИНАТАМ

Рассчитаем центр тяжести треугольной пластины, произвольной формы, одинаковой толщины.

Из какого материала мы будем делать, из стали, бумаги или платика не столь важно.

Центр тяжести трегольника является одной из семи замечательных точек, и определяется как точка пересечения медиан сторон этого треугольника.

Если же нам известны только координаты треугольника, например, мы его вырезали из тетрадки в клеточку, то координаты точки тяжести, будут определяться так

Не пытайтесь аппроксимировать эту формулу и подумать что центр трапеции будет вычисляться аналогично например по таким формулам

Это неверно, вернее неверно в случае когда масса распределена в плоскости между этими точками ( например пластины).

Если же речь идет о точечных массах расположенных в этих координатах, то формула центра масс, будет правильной.

РАСЧЕТ ЦЕНТРА ТЯЖЕСТИ трапеции ПО КООРДИНАТАМ

Как же тогда рассчитывать центр тяжести трапеции?

Умные люди нашли формулу расчета точки, но в ней исходные данные представлены в виде длин сторон трапеции.

Вот эта формула.

Она не удобна, когда нам известны только координаты трапеции. Но мы воспользуемся способом разбиения трапеции два треугольника, где для каждого из них находим центр тяжести, а потом рассчитывая уже для двух точек(центров), находим окончательное решение.

Для каждого треугольника центр будет рассчитыватся по известной формуле

Но вот, когда мы будем рассчитывать окончательную точку, надо учитывать что мы, "стягивая" в центр тяжести каждый треугольник, стягиваем и всю массу поверхности которая лежала между этими координатами.

Так как между площадью фигуры ( при одинаковой толщине) и массой связь линейная, то легко предположить что окончательный расчет будет не таким

а с учетом линейности между массой и площадью( а значит можно не высчитывать массу каждой новой точки, а учитывать лишь площадь каждого из двух треугольников) формула для трапеции будет такой

Причем эта формула будет работоспособна при любом произвольном многоугольнике, единственное условие что бы площади каждого из треугольника не пересекались друг с другом.

Итак, у нас есть фигура с координатами 0:0 5:5 10:5 15:0

Несложно представить эту фигуру и определить что это равностороняя трапеция.

Исходя из полученных выше общих формул, можно указать конкретные способы определения координат центров тяжести тел.

1. Симметрия. Если однородное тело имеет плоскость, ось или центр симметрии (рис.7), то его центр тяжести лежит соответственно в плоскости симметрии, оси симметрии или в центре симметрии.

Рис.7

2. Разбиение. Тело разбивается на конечное число частей (рис.8), для каждой из которых положение центра тяжести и площадь известны.

Рис.8

3.Метод отрицательных площадей.Частный случай способа разбиения (рис.9). Он применяется к телам, имеющим вырезы, если центры тяжести тела без выреза и вырезанной части известны. Тело в виде пластинки с вырезом представляют комбинацией сплошной пластинки (без выреза) с площадью S1 и площади вырезанной части S2 .

Рис.9

4.Метод группировки.Является хорошим дополнением двух последних методов. После разбиения фигуры на составные элементы часть их бывает удобно объединить вновь, чтобы затем упростить решение путем учета симметрии этой группы.

Центры тяжести некоторых одно­родных тел.

1) Центр тяжести дуги окруж­ности. Рассмотрим дугу АВ радиуса R с центральным углом . В силу сим­метрии центр тяжести этой дуги лежит на оси Ox (рис. 10).

Рис.10

Найдем координату по формуле . Для этого выделим на дуге АВ элемент ММ’ длиною , положение которого определяется углом . Координата х элемента ММ’ будет . Подставляя эти значения х и dl и имея в виду, что интеграл должен быть распространен на всю длину дуги, получим:

где L — длина дуги АВ, равная .

Отсюда окончательно нахо­дим, что центр тяжести дуги окружности лежит на ее оси симметрии на расстоянии от центра О, равном

где угол измеряется в радианах.

2) Центр тяжести площади тре­угольника. Рассмотрим треугольник, лежащий в плоскости Oxy, координаты вершин которого известны: Ai (xi,yi), (i = 1,2,3). Разбивая треугольник на узкие полоски, параллельные стороне А1А2 , придем к выводу, что центр тяжести треугольника должен принадлежать медиане А3 М3 (рис.11).

Рис.11

Разбивая треугольник на полоски, параллельные стороне А2А3, можно убедиться, что он должен лежать на медиане А1М1. Таким образом, центр тяжести треугольника лежит в точке пересечения его медиан, которая, как известно, отделяет от каждой медианы третью часть, считая от соответствующей стороны.

В частности, для медианы А1М1 получим, учитывая, что координаты точки М1 — это среднее арифметическое координат вершин А2 и А3 :

Таким образом, координаты центра тяжести треугольника представляют собой среднее арифметическое из координат его вершин:

3) Центр тяжести площади кругового сектора. Рассмотрим сектор круга радиуса R с центральным углом 2α, расположенный симметрично относительно оси Ox (рис.12) .

Очевидно, что yc = 0, а расстояние от центра круга, из которого вырезан этот сектор, до его центра тяжести можно определить по формуле:

Рис.12

Проще всего этот интеграл вычислить, разбивая область интегрирования на элементарные секторы с углом dφ. С точностью до бесконечно малых первого порядка такой сектор можно заменить треугольником с основанием, равным R×dφ и высотой R. Площадь такого треугольника dF=(1/2)R 2 ∙dφ, а его центр тяжести находится на расстоянии 2/3R от вершины, поэтому в (5) положим x = (2/3)R∙cosφ. Подставляя в (5) F = αR 2 , получим:

С помощью последней формулы вычислим, в частности, расстояние до центра тяжести полукруга.

Подставляя в (2) α = π/2, получим: xc = (4R)/(3π) ≅ 0,4R .

Пример 1. Определим центр тяжести однородного тела, изображён­ного на рис. 13.

Рис.13

Тело однородное, состоящее из двух частей, имеющих симметричную форму. Координаты центров тяжести их:

Объёмы их:

Поэтому координаты центра тяжести тела

Пример 2. Найдем центр тяжести пластины, согнутой под прямым углом. Размеры – на чертеже (рис.14).

Рис.14

Координаты центров тяжести:

0.

Площади:

Рис. 6.5.

Пример 3. У квадратного листа см вырезано квадратное отверстие см (рис.15). Найдем центр тяжести листа.

Рис.15

В этой задаче удобнее разделить тело на две части: большой квадрат и квадратное отверстие. Только площадь отверстия надо считать отрицательной. Тогда координаты центра тяжести листа с отверстием:

координата так как тело имеет ось симметрии (диагональ).

Пример 4. Проволочная скобка (рис.16) состоит из трёх участков оди­наковой длины l.

Рис.16

Координаты центров тяжести участ­ков:

Поэтому координаты центра тяжести всей скобки:

Пример 5. Определить положение центра тяжести фермы, все стержни которой имеют одинаковую погонную плотность (рис.17).

Напомним, что в физике плотность тела ρ и его удельный вес g связаны соотношением: γ= ρg , где g — ускорение свободного падения. Чтобы найти массу такого однородного тела, нужно плотность умножить на его объем.

Рис.17

Термин «линейная» или «погонная» плотность означает, что для определения массы стержня фермы нужно погонную плотность умножить на длину этого стержня.

Для решения задачи можно воспользоваться методом разбиения. Представив заданную ферму в виде суммы 6 отдельных стержней, получим:

где Li длина i-го стержня фермы, а xi, yi — координаты его центра тяжести.

Решение этой задачи можно упростить, если сгруппировать 5 последних стержней фермы. Нетрудно видеть, что они образуют фигуру, имеющую центр симметрии, расположенный посредине четвертого стержня, где и находится центр тяжести этой группы стержней.

Таким образом, заданную ферму можно представить комбинацией всего двух групп стержней.

Первая группа состоит из первого стержня, для нее L1 = 4 м, x1 = 0 м, y1= 2 м. Вторая группа стержней состоит из пяти стержней, для нее L2 = 20 м, x2= 3 м, y2= 2 м.

Координаты центра тяжести фермы находим по формуле:

Вопросы для самопроверки

— Что называется центром параллельных сил?

— Как определяются координаты центра параллельных сил?

— Как определить центр параллельных сил, равнодействующая которых равна нулю?

— Каким свойством обладает центр параллельных сил?

— По каким формулам вычисляются координаты центра параллельных сил?

— Что называется центром тяжести тела?

— Почему силы притяжения Земле, действующие на точку тела, можно принять за систему параллельных сил?

— Запишите формулу для определения положения центра тяжести неоднородных и однородных тел, формулу для определения положения центра тяжести плоских сечений?

— Запишите формулу для определения положения центра тяжести простых геометрических фигур: прямоугольника, треугольника, трапеции и половины круга?

— Что называют статическим моментом площади?

— Приведите пример тела, центр тяжести которого расположен вне тела.

— Как используются свойства симметрии при определении центров тяжести тел?

— В чем состоит сущность способа отрицательных весов?

— Где расположен центр тяжести дуги окружности?

— Каким графическим построением можно найти центр тяжести треугольника?

— Запишите формулу, определяющую центр тяжести кругового сектора.

— Используя формулы, определяющие центры тяжести треугольника и кругового сектора, выведите аналогичную формулу для кругового сегмента.

— По каким формулам вычисляются координаты центров тяжести однородных тел, плоских фигур и линий?

— Что называется статическим моментом площади плоской фигуры относительно оси, как он вычисляется и какую размерность имеет?

— Как определить положение центра тяжести площади, если известно положение центров тяжести отдельных ее частей?

— Какими вспомогательными теоремами пользуются при определении положения центра тяжести?

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Сдача сессии и защита диплома — страшная бессонница, которая потом кажется страшным сном. 9186 — | 7394 — или читать все.

Каждая точка М механической системы имеет определенную массу , а ее положение относительно системы отсчета ОXYZ в каждый момент времени определяется радиусом-вектором или тремя координатами .

Центром масс системы называется геометрическая точка С, радиус-вектор которой , (32.1)

где — масса всей системы материальных точек (см рисунок). Проектируя векторы обеих частей равенства (32.1) на оси XYZ, получаем формулы, определяющие координаты центра масс системы:

, , (32,2)

Как видно из формул (32.1) или (32.2), положение центра масс системы в каждый момент времени зависит только от положения и массы каждой точки этой системы. Центр тяжести тела или системы тел является центром масс этой системы. Понятие «центр масс системы» применимо для любой системы материальных точек независимо от того, находится ли она под действием каких-либо сил или нет, тогда как понятие «центр тяжести» применяется лишь для твердого тела или системы твердых тел, находящихся в однородном поле сил тяжести.

Дата добавления: 2014-01-07 ; Просмотров: 785 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Ссылка на основную публикацию
Хороший набор инструментов для автомобиля отзывы
Счастливым обладателям автомобилей необходимо иметь при себе инструменты, помогающие в чрезвычайной ситуации с машиной. Ежегодно выпускается большое количество разнообразных инструментов,...
Фейковая карта visa с деньгами
Getting a valid Visa credit card number Visa credit card number (Bulk Generate Visa Cards) To check if your credit...
Фейсбук страница владимира панаева
с 16 по 26 Декабря Поволжское отделение Российской академии художеств Лаврушинский пер., д. 15Москва 15 декабря в 18.00 в Координационном...
Хонор похожий на айфон
Apple активно продвигает iPhone XS, но есть ли достойная альтернатива дорогому и в чём-то «сырому» устройству? Honor наносит ответный удар...